| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0addcl | GIF version | ||
| Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| nn0addcl | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 9040 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | id 19 | . . 3 ⊢ (ℕ ⊆ ℂ → ℕ ⊆ ℂ) | |
| 3 | df-n0 9295 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 4 | nnaddcl 9055 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ) |
| 6 | 2, 3, 5 | un0addcl 9327 | . 2 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0) |
| 7 | 1, 6 | mpan 424 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ⊆ wss 3165 (class class class)co 5943 ℂcc 7922 + caddc 7927 ℕcn 9035 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0id 8032 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-inn 9036 df-n0 9295 |
| This theorem is referenced by: nn0addcli 9331 peano2nn0 9334 nn0addcld 9351 nn0readdcl 9353 difelfznle 10256 elfzodifsumelfzo 10328 expadd 10724 faclbnd6 10887 facavg 10889 ccatlen 11049 ccatrn 11063 fsumnn0cl 11656 bcxmas 11742 eftlub 11943 4sqlem1 12653 nn0subm 14287 mplsubgfilemcl 14403 2sqlem7 15540 |
| Copyright terms: Public domain | W3C validator |