ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addcl GIF version

Theorem nn0addcl 9400
Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
nn0addcl ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)

Proof of Theorem nn0addcl
StepHypRef Expression
1 nnsscn 9111 . 2 ℕ ⊆ ℂ
2 id 19 . . 3 (ℕ ⊆ ℂ → ℕ ⊆ ℂ)
3 df-n0 9366 . . 3 0 = (ℕ ∪ {0})
4 nnaddcl 9126 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
54adantl 277 . . 3 ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ)
62, 3, 5un0addcl 9398 . 2 ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0)
71, 6mpan 424 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wss 3197  (class class class)co 6000  cc 7993   + caddc 7998  cn 9106  0cn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0id 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-inn 9107  df-n0 9366
This theorem is referenced by:  nn0addcli  9402  peano2nn0  9405  nn0addcld  9422  nn0readdcl  9424  difelfznle  10327  elfzodifsumelfzo  10402  expadd  10798  faclbnd6  10961  facavg  10963  ccatlen  11125  ccatrn  11139  swrdccat2  11198  swrdswrdlem  11231  swrdswrd  11232  swrdccatin1  11252  pfxccatin12lem3  11259  fsumnn0cl  11909  bcxmas  11995  eftlub  12196  4sqlem1  12906  nn0subm  14541  mplsubgfilemcl  14657  2sqlem7  15794
  Copyright terms: Public domain W3C validator