ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addcl GIF version

Theorem nn0addcl 9329
Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
nn0addcl ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)

Proof of Theorem nn0addcl
StepHypRef Expression
1 nnsscn 9040 . 2 ℕ ⊆ ℂ
2 id 19 . . 3 (ℕ ⊆ ℂ → ℕ ⊆ ℂ)
3 df-n0 9295 . . 3 0 = (ℕ ∪ {0})
4 nnaddcl 9055 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
54adantl 277 . . 3 ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ)
62, 3, 5un0addcl 9327 . 2 ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0)
71, 6mpan 424 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wss 3165  (class class class)co 5943  cc 7922   + caddc 7927  cn 9035  0cn0 9294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0id 8032
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946  df-inn 9036  df-n0 9295
This theorem is referenced by:  nn0addcli  9331  peano2nn0  9334  nn0addcld  9351  nn0readdcl  9353  difelfznle  10256  elfzodifsumelfzo  10328  expadd  10724  faclbnd6  10887  facavg  10889  ccatlen  11049  ccatrn  11063  fsumnn0cl  11656  bcxmas  11742  eftlub  11943  4sqlem1  12653  nn0subm  14287  mplsubgfilemcl  14403  2sqlem7  15540
  Copyright terms: Public domain W3C validator