| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0addcl | GIF version | ||
| Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| nn0addcl | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 9061 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | id 19 | . . 3 ⊢ (ℕ ⊆ ℂ → ℕ ⊆ ℂ) | |
| 3 | df-n0 9316 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 4 | nnaddcl 9076 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ) |
| 6 | 2, 3, 5 | un0addcl 9348 | . 2 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0) |
| 7 | 1, 6 | mpan 424 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ⊆ wss 3170 (class class class)co 5957 ℂcc 7943 + caddc 7948 ℕcn 9056 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0id 8053 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-n0 9316 |
| This theorem is referenced by: nn0addcli 9352 peano2nn0 9355 nn0addcld 9372 nn0readdcl 9374 difelfznle 10277 elfzodifsumelfzo 10352 expadd 10748 faclbnd6 10911 facavg 10913 ccatlen 11074 ccatrn 11088 swrdccat2 11147 swrdswrdlem 11180 swrdswrd 11181 fsumnn0cl 11789 bcxmas 11875 eftlub 12076 4sqlem1 12786 nn0subm 14420 mplsubgfilemcl 14536 2sqlem7 15673 |
| Copyright terms: Public domain | W3C validator |