![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsprmpweqnn | GIF version |
Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.) |
Ref | Expression |
---|---|
dvdsprmpweqnn | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 9634 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
2 | dvdsprmpweq 12476 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) | |
3 | 1, 2 | syl3an2 1283 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
4 | 3 | imp 124 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛)) |
5 | df-n0 9244 | . . . . . 6 ⊢ ℕ0 = (ℕ ∪ {0}) | |
6 | 5 | rexeqi 2695 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ ∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃↑𝑛)) |
7 | rexun 3340 | . . . . 5 ⊢ (∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃↑𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛))) | |
8 | 6, 7 | bitri 184 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛))) |
9 | 0z 9331 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
10 | oveq2 5927 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑃↑𝑛) = (𝑃↑0)) | |
11 | 10 | eqeq2d 2205 | . . . . . . . 8 ⊢ (𝑛 = 0 → (𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0))) |
12 | 11 | rexsng 3660 | . . . . . . 7 ⊢ (0 ∈ ℤ → (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0))) |
13 | 9, 12 | ax-mp 5 | . . . . . 6 ⊢ (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0)) |
14 | prmnn 12251 | . . . . . . . . . . . . 13 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
15 | 14 | nncnd 8998 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
16 | 15 | exp0d 10741 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) = 1) |
17 | 16 | 3ad2ant1 1020 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑0) = 1) |
18 | 17 | eqeq2d 2205 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) ↔ 𝐴 = 1)) |
19 | eluz2b3 9672 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1)) | |
20 | eqneqall 2374 | . . . . . . . . . . . 12 ⊢ (𝐴 = 1 → (𝐴 ≠ 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) | |
21 | 20 | com12 30 | . . . . . . . . . . 11 ⊢ (𝐴 ≠ 1 → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
22 | 19, 21 | simplbiim 387 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
23 | 22 | 3ad2ant2 1021 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
24 | 18, 23 | sylbid 150 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
25 | 24 | com12 30 | . . . . . . 7 ⊢ (𝐴 = (𝑃↑0) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
26 | 25 | impd 254 | . . . . . 6 ⊢ (𝐴 = (𝑃↑0) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
27 | 13, 26 | sylbi 121 | . . . . 5 ⊢ (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
28 | 27 | jao1i 797 | . . . 4 ⊢ ((∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛)) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
29 | 8, 28 | sylbi 121 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
30 | 4, 29 | mpcom 36 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)) |
31 | 30 | ex 115 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∃wrex 2473 ∪ cun 3152 {csn 3619 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 0cc0 7874 1c1 7875 ℕcn 8984 2c2 9035 ℕ0cn0 9243 ℤcz 9320 ℤ≥cuz 9595 ↑cexp 10612 ∥ cdvds 11933 ℙcprime 12248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-1o 6471 df-2o 6472 df-er 6589 df-en 6797 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-xnn0 9307 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-fl 10342 df-mod 10397 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-dvds 11934 df-gcd 12083 df-prm 12249 df-pc 12426 |
This theorem is referenced by: difsqpwdvds 12479 |
Copyright terms: Public domain | W3C validator |