| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsprmpweqnn | GIF version | ||
| Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.) |
| Ref | Expression |
|---|---|
| dvdsprmpweqnn | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn 9729 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
| 2 | dvdsprmpweq 12824 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) | |
| 3 | 1, 2 | syl3an2 1286 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
| 4 | 3 | imp 124 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛)) |
| 5 | df-n0 9338 | . . . . . 6 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 6 | 5 | rexeqi 2713 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ ∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃↑𝑛)) |
| 7 | rexun 3364 | . . . . 5 ⊢ (∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃↑𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛))) | |
| 8 | 6, 7 | bitri 184 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛))) |
| 9 | 0z 9425 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 10 | oveq2 5982 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑃↑𝑛) = (𝑃↑0)) | |
| 11 | 10 | eqeq2d 2221 | . . . . . . . 8 ⊢ (𝑛 = 0 → (𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0))) |
| 12 | 11 | rexsng 3687 | . . . . . . 7 ⊢ (0 ∈ ℤ → (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0))) |
| 13 | 9, 12 | ax-mp 5 | . . . . . 6 ⊢ (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0)) |
| 14 | prmnn 12598 | . . . . . . . . . . . . 13 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 15 | 14 | nncnd 9092 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
| 16 | 15 | exp0d 10856 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) = 1) |
| 17 | 16 | 3ad2ant1 1023 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑0) = 1) |
| 18 | 17 | eqeq2d 2221 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) ↔ 𝐴 = 1)) |
| 19 | eluz2b3 9767 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1)) | |
| 20 | eqneqall 2390 | . . . . . . . . . . . 12 ⊢ (𝐴 = 1 → (𝐴 ≠ 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) | |
| 21 | 20 | com12 30 | . . . . . . . . . . 11 ⊢ (𝐴 ≠ 1 → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 22 | 19, 21 | simplbiim 387 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 23 | 22 | 3ad2ant2 1024 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 24 | 18, 23 | sylbid 150 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 25 | 24 | com12 30 | . . . . . . 7 ⊢ (𝐴 = (𝑃↑0) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 26 | 25 | impd 254 | . . . . . 6 ⊢ (𝐴 = (𝑃↑0) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 27 | 13, 26 | sylbi 121 | . . . . 5 ⊢ (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 28 | 27 | jao1i 800 | . . . 4 ⊢ ((∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛)) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 29 | 8, 28 | sylbi 121 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 30 | 4, 29 | mpcom 36 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)) |
| 31 | 30 | ex 115 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 712 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ≠ wne 2380 ∃wrex 2489 ∪ cun 3175 {csn 3646 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 0cc0 7967 1c1 7968 ℕcn 9078 2c2 9129 ℕ0cn0 9337 ℤcz 9414 ℤ≥cuz 9690 ↑cexp 10727 ∥ cdvds 12264 ℙcprime 12595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-1o 6532 df-2o 6533 df-er 6650 df-en 6858 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-xnn0 9401 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-fl 10457 df-mod 10512 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-dvds 12265 df-gcd 12441 df-prm 12596 df-pc 12774 |
| This theorem is referenced by: difsqpwdvds 12827 |
| Copyright terms: Public domain | W3C validator |