Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssnn0 GIF version

Theorem nnssnn0 8987
 Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0 ℕ ⊆ ℕ0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 3239 . 2 ℕ ⊆ (ℕ ∪ {0})
2 df-n0 8985 . 2 0 = (ℕ ∪ {0})
31, 2sseqtrri 3132 1 ℕ ⊆ ℕ0
 Colors of variables: wff set class Syntax hints:   ∪ cun 3069   ⊆ wss 3071  {csn 3527  0cc0 7627  ℕcn 8727  ℕ0cn0 8984 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-n0 8985 This theorem is referenced by:  nnnn0  8991  nnnn0d  9037  expcnv  11280  oddge22np1  11585
 Copyright terms: Public domain W3C validator