ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssnn0 GIF version

Theorem nnssnn0 9196
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0 ℕ ⊆ ℕ0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 3312 . 2 ℕ ⊆ (ℕ ∪ {0})
2 df-n0 9194 . 2 0 = (ℕ ∪ {0})
31, 2sseqtrri 3204 1 ℕ ⊆ ℕ0
Colors of variables: wff set class
Syntax hints:  cun 3141  wss 3143  {csn 3606  0cc0 7828  cn 8936  0cn0 9193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-un 3147  df-in 3149  df-ss 3156  df-n0 9194
This theorem is referenced by:  nnnn0  9200  nnnn0d  9246  expcnv  11529  oddge22np1  11903
  Copyright terms: Public domain W3C validator