ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssnn0 GIF version

Theorem nnssnn0 9313
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0 ℕ ⊆ ℕ0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 3340 . 2 ℕ ⊆ (ℕ ∪ {0})
2 df-n0 9311 . 2 0 = (ℕ ∪ {0})
31, 2sseqtrri 3232 1 ℕ ⊆ ℕ0
Colors of variables: wff set class
Syntax hints:  cun 3168  wss 3170  {csn 3637  0cc0 7940  cn 9051  0cn0 9310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-n0 9311
This theorem is referenced by:  nnnn0  9317  nnnn0d  9363  expcnv  11885  oddge22np1  12262  bitsfzolem  12335
  Copyright terms: Public domain W3C validator