![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnssnn0 | GIF version |
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3312 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
2 | df-n0 9194 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 1, 2 | sseqtrri 3204 | 1 ⊢ ℕ ⊆ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3141 ⊆ wss 3143 {csn 3606 0cc0 7828 ℕcn 8936 ℕ0cn0 9193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-v 2753 df-un 3147 df-in 3149 df-ss 3156 df-n0 9194 |
This theorem is referenced by: nnnn0 9200 nnnn0d 9246 expcnv 11529 oddge22np1 11903 |
Copyright terms: Public domain | W3C validator |