| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ex | GIF version | ||
| Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
| Ref | Expression |
|---|---|
| nn0ex | ⊢ ℕ0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9269 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnex 9015 | . . 3 ⊢ ℕ ∈ V | |
| 3 | c0ex 8039 | . . . 4 ⊢ 0 ∈ V | |
| 4 | 3 | snex 4219 | . . 3 ⊢ {0} ∈ V |
| 5 | 2, 4 | unex 4477 | . 2 ⊢ (ℕ ∪ {0}) ∈ V |
| 6 | 1, 5 | eqeltri 2269 | 1 ⊢ ℕ0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 {csn 3623 0cc0 7898 ℕcn 9009 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-i2m1 8003 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-inn 9010 df-n0 9269 |
| This theorem is referenced by: nn0ennn 10544 nnenom 10545 uzennn 10547 xnn0nnen 10548 wrdexg 10965 expcnvap0 11686 expcnvre 11687 expcnv 11688 geolim 11695 mertenslem2 11720 eftlub 11874 bitsfval 12126 bitsf 12130 1arith 12563 znnen 12642 psrval 14300 fnpsr 14301 psrbag 14303 psrbasg 14308 psrelbas 14309 psrplusgg 14312 psraddcl 14314 psr0cl 14315 psr0lid 14316 psrnegcl 14317 psrlinv 14318 psrgrp 14319 psr1clfi 14322 mplsubgfilemm 14332 mplsubgfilemcl 14333 plyval 15076 elply2 15079 plyf 15081 elplyr 15084 plyaddlem1 15091 plyaddlem 15093 plymullem 15094 plyco 15103 plycj 15105 plyrecj 15107 |
| Copyright terms: Public domain | W3C validator |