| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ex | GIF version | ||
| Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
| Ref | Expression |
|---|---|
| nn0ex | ⊢ ℕ0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9278 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnex 9024 | . . 3 ⊢ ℕ ∈ V | |
| 3 | c0ex 8048 | . . . 4 ⊢ 0 ∈ V | |
| 4 | 3 | snex 4228 | . . 3 ⊢ {0} ∈ V |
| 5 | 2, 4 | unex 4486 | . 2 ⊢ (ℕ ∪ {0}) ∈ V |
| 6 | 1, 5 | eqeltri 2277 | 1 ⊢ ℕ0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ∪ cun 3163 {csn 3632 0cc0 7907 ℕcn 9018 ℕ0cn0 9277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-i2m1 8012 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-inn 9019 df-n0 9278 |
| This theorem is referenced by: nn0ennn 10559 nnenom 10560 uzennn 10562 xnn0nnen 10563 wrdexg 10980 expcnvap0 11732 expcnvre 11733 expcnv 11734 geolim 11741 mertenslem2 11766 eftlub 11920 bitsfval 12172 bitsf 12176 1arith 12609 znnen 12688 psrval 14346 fnpsr 14347 psrbag 14349 psrbasg 14354 psrelbas 14355 psrplusgg 14358 psraddcl 14360 psr0cl 14361 psr0lid 14362 psrnegcl 14363 psrlinv 14364 psrgrp 14365 psr1clfi 14368 mplsubgfilemm 14378 mplsubgfilemcl 14379 plyval 15122 elply2 15125 plyf 15127 elplyr 15130 plyaddlem1 15137 plyaddlem 15139 plymullem 15140 plyco 15149 plycj 15151 plyrecj 15153 |
| Copyright terms: Public domain | W3C validator |