| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ex | GIF version | ||
| Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
| Ref | Expression |
|---|---|
| nn0ex | ⊢ ℕ0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9366 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnex 9112 | . . 3 ⊢ ℕ ∈ V | |
| 3 | c0ex 8136 | . . . 4 ⊢ 0 ∈ V | |
| 4 | 3 | snex 4268 | . . 3 ⊢ {0} ∈ V |
| 5 | 2, 4 | unex 4531 | . 2 ⊢ (ℕ ∪ {0}) ∈ V |
| 6 | 1, 5 | eqeltri 2302 | 1 ⊢ ℕ0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 {csn 3666 0cc0 7995 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-i2m1 8100 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: nn0ennn 10650 nnenom 10651 uzennn 10653 xnn0nnen 10654 wrdexg 11077 expcnvap0 12008 expcnvre 12009 expcnv 12010 geolim 12017 mertenslem2 12042 eftlub 12196 bitsfval 12448 bitsf 12452 1arith 12885 znnen 12964 psrval 14624 fnpsr 14625 psrbag 14627 psrbasg 14632 psrelbas 14633 psrplusgg 14636 psraddcl 14638 psr0cl 14639 psr0lid 14640 psrnegcl 14641 psrlinv 14642 psrgrp 14643 psr1clfi 14646 mplsubgfilemm 14656 mplsubgfilemcl 14657 plyval 15400 elply2 15403 plyf 15405 elplyr 15408 plyaddlem1 15415 plyaddlem 15417 plymullem 15418 plyco 15427 plycj 15429 plyrecj 15431 |
| Copyright terms: Public domain | W3C validator |