Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ex | GIF version |
Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
Ref | Expression |
---|---|
nn0ex | ⊢ ℕ0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9136 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnex 8884 | . . 3 ⊢ ℕ ∈ V | |
3 | c0ex 7914 | . . . 4 ⊢ 0 ∈ V | |
4 | 3 | snex 4171 | . . 3 ⊢ {0} ∈ V |
5 | 2, 4 | unex 4426 | . 2 ⊢ (ℕ ∪ {0}) ∈ V |
6 | 1, 5 | eqeltri 2243 | 1 ⊢ ℕ0 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 {csn 3583 0cc0 7774 ℕcn 8878 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-i2m1 7879 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-inn 8879 df-n0 9136 |
This theorem is referenced by: nn0ennn 10389 nnenom 10390 uzennn 10392 expcnvap0 11465 expcnvre 11466 expcnv 11467 geolim 11474 mertenslem2 11499 eftlub 11653 1arith 12319 znnen 12353 |
Copyright terms: Public domain | W3C validator |