| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ex | GIF version | ||
| Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
| Ref | Expression |
|---|---|
| nn0ex | ⊢ ℕ0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9316 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnex 9062 | . . 3 ⊢ ℕ ∈ V | |
| 3 | c0ex 8086 | . . . 4 ⊢ 0 ∈ V | |
| 4 | 3 | snex 4237 | . . 3 ⊢ {0} ∈ V |
| 5 | 2, 4 | unex 4496 | . 2 ⊢ (ℕ ∪ {0}) ∈ V |
| 6 | 1, 5 | eqeltri 2279 | 1 ⊢ ℕ0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ∪ cun 3168 {csn 3638 0cc0 7945 ℕcn 9056 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-i2m1 8050 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-inn 9057 df-n0 9316 |
| This theorem is referenced by: nn0ennn 10600 nnenom 10601 uzennn 10603 xnn0nnen 10604 wrdexg 11027 expcnvap0 11888 expcnvre 11889 expcnv 11890 geolim 11897 mertenslem2 11922 eftlub 12076 bitsfval 12328 bitsf 12332 1arith 12765 znnen 12844 psrval 14503 fnpsr 14504 psrbag 14506 psrbasg 14511 psrelbas 14512 psrplusgg 14515 psraddcl 14517 psr0cl 14518 psr0lid 14519 psrnegcl 14520 psrlinv 14521 psrgrp 14522 psr1clfi 14525 mplsubgfilemm 14535 mplsubgfilemcl 14536 plyval 15279 elply2 15282 plyf 15284 elplyr 15287 plyaddlem1 15294 plyaddlem 15296 plymullem 15297 plyco 15306 plycj 15308 plyrecj 15310 |
| Copyright terms: Public domain | W3C validator |