Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ex | GIF version |
Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
Ref | Expression |
---|---|
nn0ex | ⊢ ℕ0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9115 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnex 8863 | . . 3 ⊢ ℕ ∈ V | |
3 | c0ex 7893 | . . . 4 ⊢ 0 ∈ V | |
4 | 3 | snex 4164 | . . 3 ⊢ {0} ∈ V |
5 | 2, 4 | unex 4419 | . 2 ⊢ (ℕ ∪ {0}) ∈ V |
6 | 1, 5 | eqeltri 2239 | 1 ⊢ ℕ0 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 {csn 3576 0cc0 7753 ℕcn 8857 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-i2m1 7858 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-inn 8858 df-n0 9115 |
This theorem is referenced by: nn0ennn 10368 nnenom 10369 uzennn 10371 expcnvap0 11443 expcnvre 11444 expcnv 11445 geolim 11452 mertenslem2 11477 eftlub 11631 1arith 12297 znnen 12331 |
Copyright terms: Public domain | W3C validator |