| Intuitionistic Logic Explorer Theorem List (p. 92 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lbcl 9101* | If a set of reals contains a lower bound, it contains a unique lower bound that belongs to the set. (Contributed by NM, 9-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∈ 𝑆) | ||
| Theorem | lble 9102* | If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) | ||
| Theorem | lbinf 9103* | If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → inf(𝑆, ℝ, < ) = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦)) | ||
| Theorem | lbinfcl 9104* | If a set of reals contains a lower bound, it contains its infimum. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
| Theorem | lbinfle 9105* | If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
| Theorem | suprubex 9106* | A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | suprlubex 9107* | The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by Jim Kingdon, 19-Jan-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) | ||
| Theorem | suprnubex 9108* | An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) | ||
| Theorem | suprleubex 9109* | The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) | ||
| Theorem | negiso 9110 | Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) ⇒ ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) | ||
| Theorem | dfinfre 9111* | The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = ∪ {𝑥 ∈ ℝ ∣ (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))}) | ||
| Theorem | sup3exmid 9112* | If any inhabited set of real numbers bounded from above has a supremum, excluded middle follows. (Contributed by Jim Kingdon, 2-Apr-2023.) |
| ⊢ ((𝑢 ⊆ ℝ ∧ ∃𝑤 𝑤 ∈ 𝑢 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑢 𝑦 ≤ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑢 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝑢 𝑦 < 𝑧))) ⇒ ⊢ DECID 𝜑 | ||
| Theorem | crap0 9113 | The real representation of complex numbers is apart from zero iff one of its terms is apart from zero. (Contributed by Jim Kingdon, 5-Mar-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 0 ∨ 𝐵 # 0) ↔ (𝐴 + (i · 𝐵)) # 0)) | ||
| Theorem | creur 9114* | The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | creui 9115* | The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | cju 9116* | The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | ||
| Theorem | ofnegsub 9117 | Function analogue of negsub 8402. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘𝑓 + ((𝐴 × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) | ||
| Syntax | cn 9118 | Extend class notation to include the class of positive integers. |
| class ℕ | ||
| Definition | df-inn 9119* | Definition of the set of positive integers. For naming consistency with the Metamath Proof Explorer usages should refer to dfnn2 9120 instead. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) (New usage is discouraged.) |
| ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
| Theorem | dfnn2 9120* | Definition of the set of positive integers. Another name for df-inn 9119. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) |
| ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
| Theorem | peano5nni 9121* | Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴) | ||
| Theorem | nnssre 9122 | The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| ⊢ ℕ ⊆ ℝ | ||
| Theorem | nnsscn 9123 | The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ℕ ⊆ ℂ | ||
| Theorem | nnex 9124 | The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℕ ∈ V | ||
| Theorem | nnre 9125 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | ||
| Theorem | nncn 9126 | A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | ||
| Theorem | nnrei 9127 | A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ ℝ | ||
| Theorem | nncni 9128 | A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ∈ ℂ | ||
| Theorem | 1nn 9129 | Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| ⊢ 1 ∈ ℕ | ||
| Theorem | peano2nn 9130 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | ||
| Theorem | nnred 9131 | A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | nncnd 9132 | A positive integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | peano2nnd 9133 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) | ||
| Theorem | nnind 9134* | Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 9138 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
| Theorem | nnindALT 9135* |
Principle of Mathematical Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 9134 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
| Theorem | nn1m1nn 9136 | Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) | ||
| Theorem | nn1suc 9137* | If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → 𝜒) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜃) | ||
| Theorem | nnaddcl 9138 | Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcl 9139 | Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcli 9140 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℕ | ||
| Theorem | nnge1 9141 | A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | ||
| Theorem | nnle1eq1 9142 | A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1)) | ||
| Theorem | nngt0 9143 | A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | ||
| Theorem | nnnlt1 9144 | A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 < 1) | ||
| Theorem | 0nnn 9145 | Zero is not a positive integer. (Contributed by NM, 25-Aug-1999.) |
| ⊢ ¬ 0 ∈ ℕ | ||
| Theorem | nnne0 9146 | A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | nnap0 9147 | A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 # 0) | ||
| Theorem | nngt0i 9148 | A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 0 < 𝐴 | ||
| Theorem | nnap0i 9149 | A positive integer is apart from zero (inference version). (Contributed by Jim Kingdon, 1-Jan-2023.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 # 0 | ||
| Theorem | nnne0i 9150 | A positive integer is nonzero (inference version). (Contributed by NM, 25-Aug-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ≠ 0 | ||
| Theorem | nn2ge 9151* | There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) | ||
| Theorem | nn1gt1 9152 | A positive integer is either one or greater than one. This is for ℕ; 0elnn 4711 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) | ||
| Theorem | nngt1ne1 9153 | A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.) |
| ⊢ (𝐴 ∈ ℕ → (1 < 𝐴 ↔ 𝐴 ≠ 1)) | ||
| Theorem | nndivre 9154 | The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) | ||
| Theorem | nnrecre 9155 | The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
| ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) | ||
| Theorem | nnrecgt0 9156 | The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 0 < (1 / 𝐴)) | ||
| Theorem | nnsub 9157 | Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ)) | ||
| Theorem | nnsubi 9158 | Subtraction of positive integers. (Contributed by NM, 19-Aug-2001.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ) | ||
| Theorem | nndiv 9159* | Two ways to express "𝐴 divides 𝐵 " for positive integers. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ)) | ||
| Theorem | nndivtr 9160 | Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ) | ||
| Theorem | nnge1d 9161 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 1 ≤ 𝐴) | ||
| Theorem | nngt0d 9162 | A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
| Theorem | nnne0d 9163 | A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
| Theorem | nnap0d 9164 | A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
| Theorem | nnrecred 9165 | The reciprocal of a positive integer is real. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) | ||
| Theorem | nnaddcld 9166 | Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcld 9167 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) | ||
| Theorem | nndivred 9168 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) | ||
The decimal representation of numbers/integers is based on the decimal digits 0 through 9 (df-0 8014 through df-9 9184), which are explicitly defined in the following. Note that the numbers 0 and 1 are constants defined as primitives of the complex number axiom system (see df-0 8014 and df-1 8015). Integers can also be exhibited as sums of powers of 10 (e.g., the number 103 can be expressed as ((;10↑2) + 3)) or as some other expression built from operations on the numbers 0 through 9. For example, the prime number 823541 can be expressed as (7↑7) − 2. Most abstract math rarely requires numbers larger than 4. Even in Wiles' proof of Fermat's Last Theorem, the largest number used appears to be 12. | ||
| Syntax | c2 9169 | Extend class notation to include the number 2. |
| class 2 | ||
| Syntax | c3 9170 | Extend class notation to include the number 3. |
| class 3 | ||
| Syntax | c4 9171 | Extend class notation to include the number 4. |
| class 4 | ||
| Syntax | c5 9172 | Extend class notation to include the number 5. |
| class 5 | ||
| Syntax | c6 9173 | Extend class notation to include the number 6. |
| class 6 | ||
| Syntax | c7 9174 | Extend class notation to include the number 7. |
| class 7 | ||
| Syntax | c8 9175 | Extend class notation to include the number 8. |
| class 8 | ||
| Syntax | c9 9176 | Extend class notation to include the number 9. |
| class 9 | ||
| Definition | df-2 9177 | Define the number 2. (Contributed by NM, 27-May-1999.) |
| ⊢ 2 = (1 + 1) | ||
| Definition | df-3 9178 | Define the number 3. (Contributed by NM, 27-May-1999.) |
| ⊢ 3 = (2 + 1) | ||
| Definition | df-4 9179 | Define the number 4. (Contributed by NM, 27-May-1999.) |
| ⊢ 4 = (3 + 1) | ||
| Definition | df-5 9180 | Define the number 5. (Contributed by NM, 27-May-1999.) |
| ⊢ 5 = (4 + 1) | ||
| Definition | df-6 9181 | Define the number 6. (Contributed by NM, 27-May-1999.) |
| ⊢ 6 = (5 + 1) | ||
| Definition | df-7 9182 | Define the number 7. (Contributed by NM, 27-May-1999.) |
| ⊢ 7 = (6 + 1) | ||
| Definition | df-8 9183 | Define the number 8. (Contributed by NM, 27-May-1999.) |
| ⊢ 8 = (7 + 1) | ||
| Definition | df-9 9184 | Define the number 9. (Contributed by NM, 27-May-1999.) |
| ⊢ 9 = (8 + 1) | ||
| Theorem | 0ne1 9185 | 0 ≠ 1 (common case). See aso 1ap0 8745. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 ≠ 1 | ||
| Theorem | 1ne0 9186 | 1 ≠ 0. See aso 1ap0 8745. (Contributed by Jim Kingdon, 9-Mar-2020.) |
| ⊢ 1 ≠ 0 | ||
| Theorem | 1m1e0 9187 | (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ (1 − 1) = 0 | ||
| Theorem | 2re 9188 | The number 2 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 2 ∈ ℝ | ||
| Theorem | 2cn 9189 | The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| ⊢ 2 ∈ ℂ | ||
| Theorem | 2ex 9190 | 2 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 2 ∈ V | ||
| Theorem | 2cnd 9191 | 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 2 ∈ ℂ) | ||
| Theorem | 3re 9192 | The number 3 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 3 ∈ ℝ | ||
| Theorem | 3cn 9193 | The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
| ⊢ 3 ∈ ℂ | ||
| Theorem | 3ex 9194 | 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 3 ∈ V | ||
| Theorem | 4re 9195 | The number 4 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 4 ∈ ℝ | ||
| Theorem | 4cn 9196 | The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 4 ∈ ℂ | ||
| Theorem | 5re 9197 | The number 5 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 5 ∈ ℝ | ||
| Theorem | 5cn 9198 | The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 5 ∈ ℂ | ||
| Theorem | 6re 9199 | The number 6 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 6 ∈ ℝ | ||
| Theorem | 6cn 9200 | The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 6 ∈ ℂ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |