HomeHome Intuitionistic Logic Explorer
Theorem List (p. 92 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9101-9200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzltp1le 9101 Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
 
Theoremzleltp1 9102 Integer ordering relation. (Contributed by NM, 10-May-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))
 
Theoremzlem1lt 9103 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
 
Theoremzltlem1 9104 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
 
Theoremzgt0ge1 9105 An integer greater than 0 is greater than or equal to 1. (Contributed by AV, 14-Oct-2018.)
(𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍))
 
Theoremnnleltp1 9106 Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵𝐴 < (𝐵 + 1)))
 
Theoremnnltp1le 9107 Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵))
 
Theoremnnaddm1cl 9108 Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ)
 
Theoremnn0ltp1le 9109 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
 
Theoremnn0leltp1 9110 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁𝑀 < (𝑁 + 1)))
 
Theoremnn0ltlem1 9111 Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
 
Theoremznn0sub 9112 The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 9113.) (Contributed by NM, 14-Jul-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
 
Theoremnn0sub 9113 Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
 
Theoremnn0n0n1ge2 9114 A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
 
Theoremelz2 9115* Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
 
Theoremdfz2 9116 Alternate definition of the integers, based on elz2 9115. (Contributed by Mario Carneiro, 16-May-2014.)
ℤ = ( − “ (ℕ × ℕ))
 
Theoremnn0sub2 9117 Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁𝑀) ∈ ℕ0)
 
Theoremzapne 9118 Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁𝑀𝑁))
 
Theoremzdceq 9119 Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)
 
Theoremzdcle 9120 Integer is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
 
Theoremzdclt 9121 Integer < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵)
 
Theoremzltlen 9122 Integer 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8387 which is a similar result for real numbers. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremnn0n0n1ge2b 9123 A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
(𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
 
Theoremnn0lt10b 9124 A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
 
Theoremnn0lt2 9125 A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))
 
Theoremnn0le2is012 9126 A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.)
((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
 
Theoremnn0lem1lt 9127 Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
 
Theoremnnlem1lt 9128 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
 
Theoremnnltlem1 9129 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
 
Theoremnnm1ge0 9130 A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.)
(𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1))
 
Theoremnn0ge0div 9131 Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿))
 
Theoremzdiv 9132* Two ways to express "𝑀 divides 𝑁. (Contributed by NM, 3-Oct-2008.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
 
Theoremzdivadd 9133 Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it divides 𝐴 + 𝐵. (Contributed by NM, 3-Oct-2008.)
(((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ)
 
Theoremzdivmul 9134 Property of divisibility: if 𝐷 divides 𝐴 then it divides 𝐵 · 𝐴. (Contributed by NM, 3-Oct-2008.)
(((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ)
 
Theoremzextle 9135* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
 
Theoremzextlt 9136* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀𝑘 < 𝑁)) → 𝑀 = 𝑁)
 
Theoremrecnz 9137 The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ)
 
Theorembtwnnz 9138 A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ)
 
Theoremgtndiv 9139 A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ)
 
Theoremhalfnz 9140 One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
¬ (1 / 2) ∈ ℤ
 
Theorem3halfnz 9141 Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
¬ (3 / 2) ∈ ℤ
 
Theoremsuprzclex 9142* The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℤ)       (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
 
Theoremprime 9143* Two ways to express "𝐴 is a prime number (or 1)." (Contributed by NM, 4-May-2005.)
(𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
 
Theoremmsqznn 9144 The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.)
((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ)
 
Theoremzneo 9145 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1))
 
Theoremnneoor 9146 A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
 
Theoremnneo 9147 A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
 
Theoremnneoi 9148 A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.)
𝑁 ∈ ℕ       ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ)
 
Theoremzeo 9149 An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
(𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
 
Theoremzeo2 9150 An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
(𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
 
Theorempeano2uz2 9151* Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
 
Theorempeano5uzti 9152* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
(𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
 
Theorempeano5uzi 9153* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
𝑁 ∈ ℤ       ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)
 
Theoremdfuzi 9154* An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 8715 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
𝑁 ∈ ℤ       {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
 
Theoremuzind 9155* Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
 
Theoremuzind2 9156* Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.)
(𝑗 = (𝑀 + 1) → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏)
 
Theoremuzind3 9157* Induction on the upper integers that start at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑚 → (𝜑𝜒))    &   (𝑗 = (𝑚 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}) → 𝜏)
 
Theoremnn0ind 9158* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ0 → (𝜒𝜃))       (𝐴 ∈ ℕ0𝜏)
 
Theoremfzind 9159* Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑥 = 𝑀 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐾 → (𝜑𝜏))    &   ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)    &   (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))       (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
 
Theoremfnn0ind 9160* Induction on the integers from 0 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐾 → (𝜑𝜏))    &   (𝑁 ∈ ℕ0𝜓)    &   ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))       ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
 
Theoremnn0ind-raph 9161* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ0 → (𝜒𝜃))       (𝐴 ∈ ℕ0𝜏)
 
Theoremzindd 9162* Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜏))    &   (𝑥 = -𝑦 → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜂))    &   (𝜁𝜓)    &   (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))    &   (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))       (𝜁 → (𝐴 ∈ ℤ → 𝜂))
 
Theorembtwnz 9163* Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
(𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦))
 
Theoremnn0zd 9164 A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℤ)
 
Theoremnnzd 9165 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℤ)
 
Theoremzred 9166 An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑𝐴 ∈ ℝ)
 
Theoremzcnd 9167 An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑𝐴 ∈ ℂ)
 
Theoremznegcld 9168 Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑 → -𝐴 ∈ ℤ)
 
Theorempeano2zd 9169 Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑 → (𝐴 + 1) ∈ ℤ)
 
Theoremzaddcld 9170 Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
 
Theoremzsubcld 9171 Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴𝐵) ∈ ℤ)
 
Theoremzmulcld 9172 Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴 · 𝐵) ∈ ℤ)
 
Theoremzadd2cl 9173 Increasing an integer by 2 results in an integer. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
(𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ)
 
Theorembtwnapz 9174 A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵 < (𝐴 + 1))       (𝜑𝐵 # 𝐶)
 
4.4.10  Decimal arithmetic
 
Syntaxcdc 9175 Constant used for decimal constructor.
class 𝐴𝐵
 
Definitiondf-dec 9176 Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example, (1000 + 2000) = 3000 1kp2ke3k 12925. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.)
𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
 
Theorem9p1e10 9177 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
(9 + 1) = 10
 
Theoremdfdec10 9178 Version of the definition of the "decimal constructor" using 10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
𝐴𝐵 = ((10 · 𝐴) + 𝐵)
 
Theoremdeceq1 9179 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
 
Theoremdeceq2 9180 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
 
Theoremdeceq1i 9181 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵       𝐴𝐶 = 𝐵𝐶
 
Theoremdeceq2i 9182 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵       𝐶𝐴 = 𝐶𝐵
 
Theoremdeceq12i 9183 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵    &   𝐶 = 𝐷       𝐴𝐶 = 𝐵𝐷
 
Theoremnumnncl 9184 Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ       ((𝑇 · 𝐴) + 𝐵) ∈ ℕ
 
Theoremnum0u 9185 Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0       (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0)
 
Theoremnum0h 9186 Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0       𝐴 = ((𝑇 · 0) + 𝐴)
 
Theoremnumcl 9187 Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
 
Theoremnumsuc 9188 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   (𝐵 + 1) = 𝐶    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)       (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶)
 
Theoremdeccl 9189 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       𝐴𝐵 ∈ ℕ0
 
Theorem10nn 9190 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.)
10 ∈ ℕ
 
Theorem10pos 9191 The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
0 < 10
 
Theorem10nn0 9192 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
10 ∈ ℕ0
 
Theorem10re 9193 The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
10 ∈ ℝ
 
Theoremdecnncl 9194 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ       𝐴𝐵 ∈ ℕ
 
Theoremdec0u 9195 Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0       (10 · 𝐴) = 𝐴0
 
Theoremdec0h 9196 Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0       𝐴 = 0𝐴
 
Theoremnumnncl2 9197 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ       ((𝑇 · 𝐴) + 0) ∈ ℕ
 
Theoremdecnncl2 9198 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ       𝐴0 ∈ ℕ
 
Theoremnumlt 9199 Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ    &   𝐵 < 𝐶       ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶)
 
Theoremnumltc 9200 Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 < 𝑇    &   𝐴 < 𝐵       ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >