HomeHome Intuitionistic Logic Explorer
Theorem List (p. 92 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9101-9200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxc9 9101 Extend class notation to include the number 9.
class 9
 
Definitiondf-2 9102 Define the number 2. (Contributed by NM, 27-May-1999.)
2 = (1 + 1)
 
Definitiondf-3 9103 Define the number 3. (Contributed by NM, 27-May-1999.)
3 = (2 + 1)
 
Definitiondf-4 9104 Define the number 4. (Contributed by NM, 27-May-1999.)
4 = (3 + 1)
 
Definitiondf-5 9105 Define the number 5. (Contributed by NM, 27-May-1999.)
5 = (4 + 1)
 
Definitiondf-6 9106 Define the number 6. (Contributed by NM, 27-May-1999.)
6 = (5 + 1)
 
Definitiondf-7 9107 Define the number 7. (Contributed by NM, 27-May-1999.)
7 = (6 + 1)
 
Definitiondf-8 9108 Define the number 8. (Contributed by NM, 27-May-1999.)
8 = (7 + 1)
 
Definitiondf-9 9109 Define the number 9. (Contributed by NM, 27-May-1999.)
9 = (8 + 1)
 
Theorem0ne1 9110 0 ≠ 1 (common case). See aso 1ap0 8670. (Contributed by David A. Wheeler, 8-Dec-2018.)
0 ≠ 1
 
Theorem1ne0 9111 1 ≠ 0. See aso 1ap0 8670. (Contributed by Jim Kingdon, 9-Mar-2020.)
1 ≠ 0
 
Theorem1m1e0 9112 (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
(1 − 1) = 0
 
Theorem2re 9113 The number 2 is real. (Contributed by NM, 27-May-1999.)
2 ∈ ℝ
 
Theorem2cn 9114 The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.)
2 ∈ ℂ
 
Theorem2ex 9115 2 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
2 ∈ V
 
Theorem2cnd 9116 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(𝜑 → 2 ∈ ℂ)
 
Theorem3re 9117 The number 3 is real. (Contributed by NM, 27-May-1999.)
3 ∈ ℝ
 
Theorem3cn 9118 The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.)
3 ∈ ℂ
 
Theorem3ex 9119 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
3 ∈ V
 
Theorem4re 9120 The number 4 is real. (Contributed by NM, 27-May-1999.)
4 ∈ ℝ
 
Theorem4cn 9121 The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.)
4 ∈ ℂ
 
Theorem5re 9122 The number 5 is real. (Contributed by NM, 27-May-1999.)
5 ∈ ℝ
 
Theorem5cn 9123 The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
5 ∈ ℂ
 
Theorem6re 9124 The number 6 is real. (Contributed by NM, 27-May-1999.)
6 ∈ ℝ
 
Theorem6cn 9125 The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
6 ∈ ℂ
 
Theorem7re 9126 The number 7 is real. (Contributed by NM, 27-May-1999.)
7 ∈ ℝ
 
Theorem7cn 9127 The number 7 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
7 ∈ ℂ
 
Theorem8re 9128 The number 8 is real. (Contributed by NM, 27-May-1999.)
8 ∈ ℝ
 
Theorem8cn 9129 The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
8 ∈ ℂ
 
Theorem9re 9130 The number 9 is real. (Contributed by NM, 27-May-1999.)
9 ∈ ℝ
 
Theorem9cn 9131 The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
9 ∈ ℂ
 
Theorem0le0 9132 Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.)
0 ≤ 0
 
Theorem0le2 9133 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.)
0 ≤ 2
 
Theorem2pos 9134 The number 2 is positive. (Contributed by NM, 27-May-1999.)
0 < 2
 
Theorem2ne0 9135 The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.)
2 ≠ 0
 
Theorem2ap0 9136 The number 2 is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
2 # 0
 
Theorem3pos 9137 The number 3 is positive. (Contributed by NM, 27-May-1999.)
0 < 3
 
Theorem3ne0 9138 The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.)
3 ≠ 0
 
Theorem3ap0 9139 The number 3 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.)
3 # 0
 
Theorem4pos 9140 The number 4 is positive. (Contributed by NM, 27-May-1999.)
0 < 4
 
Theorem4ne0 9141 The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.)
4 ≠ 0
 
Theorem4ap0 9142 The number 4 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.)
4 # 0
 
Theorem5pos 9143 The number 5 is positive. (Contributed by NM, 27-May-1999.)
0 < 5
 
Theorem6pos 9144 The number 6 is positive. (Contributed by NM, 27-May-1999.)
0 < 6
 
Theorem7pos 9145 The number 7 is positive. (Contributed by NM, 27-May-1999.)
0 < 7
 
Theorem8pos 9146 The number 8 is positive. (Contributed by NM, 27-May-1999.)
0 < 8
 
Theorem9pos 9147 The number 9 is positive. (Contributed by NM, 27-May-1999.)
0 < 9
 
4.4.4  Some properties of specific numbers

This includes adding two pairs of values 1..10 (where the right is less than the left) and where the left is less than the right for the values 1..10.

 
Theoremneg1cn 9148 -1 is a complex number (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
-1 ∈ ℂ
 
Theoremneg1rr 9149 -1 is a real number (common case). (Contributed by David A. Wheeler, 5-Dec-2018.)
-1 ∈ ℝ
 
Theoremneg1ne0 9150 -1 is nonzero (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
-1 ≠ 0
 
Theoremneg1lt0 9151 -1 is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
-1 < 0
 
Theoremneg1ap0 9152 -1 is apart from zero. (Contributed by Jim Kingdon, 9-Jun-2020.)
-1 # 0
 
Theoremnegneg1e1 9153 --1 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
--1 = 1
 
Theorem1pneg1e0 9154 1 + -1 is 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 + -1) = 0
 
Theorem0m0e0 9155 0 minus 0 equals 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(0 − 0) = 0
 
Theorem1m0e1 9156 1 - 0 = 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 − 0) = 1
 
Theorem0p1e1 9157 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
(0 + 1) = 1
 
Theoremfv0p1e1 9158 Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
(𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))
 
Theorem1p0e1 9159 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 + 0) = 1
 
Theorem1p1e2 9160 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
(1 + 1) = 2
 
Theorem2m1e1 9161 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 9189. (Contributed by David A. Wheeler, 4-Jan-2017.)
(2 − 1) = 1
 
Theorem1e2m1 9162 1 = 2 - 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
1 = (2 − 1)
 
Theorem3m1e2 9163 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.)
(3 − 1) = 2
 
Theorem4m1e3 9164 4 - 1 = 3. (Contributed by AV, 8-Feb-2021.) (Proof shortened by AV, 6-Sep-2021.)
(4 − 1) = 3
 
Theorem5m1e4 9165 5 - 1 = 4. (Contributed by AV, 6-Sep-2021.)
(5 − 1) = 4
 
Theorem6m1e5 9166 6 - 1 = 5. (Contributed by AV, 6-Sep-2021.)
(6 − 1) = 5
 
Theorem7m1e6 9167 7 - 1 = 6. (Contributed by AV, 6-Sep-2021.)
(7 − 1) = 6
 
Theorem8m1e7 9168 8 - 1 = 7. (Contributed by AV, 6-Sep-2021.)
(8 − 1) = 7
 
Theorem9m1e8 9169 9 - 1 = 8. (Contributed by AV, 6-Sep-2021.)
(9 − 1) = 8
 
Theorem2p2e4 9170 Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: https://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
(2 + 2) = 4
 
Theorem2times 9171 Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
(𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
 
Theoremtimes2 9172 A number times 2. (Contributed by NM, 16-Oct-2007.)
(𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
 
Theorem2timesi 9173 Two times a number. (Contributed by NM, 1-Aug-1999.)
𝐴 ∈ ℂ       (2 · 𝐴) = (𝐴 + 𝐴)
 
Theoremtimes2i 9174 A number times 2. (Contributed by NM, 11-May-2004.)
𝐴 ∈ ℂ       (𝐴 · 2) = (𝐴 + 𝐴)
 
Theorem2txmxeqx 9175 Two times a complex number minus the number itself results in the number itself. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
(𝑋 ∈ ℂ → ((2 · 𝑋) − 𝑋) = 𝑋)
 
Theorem2div2e1 9176 2 divided by 2 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 / 2) = 1
 
Theorem2p1e3 9177 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.)
(2 + 1) = 3
 
Theorem1p2e3 9178 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 + 2) = 3
 
Theorem3p1e4 9179 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.)
(3 + 1) = 4
 
Theorem4p1e5 9180 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.)
(4 + 1) = 5
 
Theorem5p1e6 9181 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.)
(5 + 1) = 6
 
Theorem6p1e7 9182 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.)
(6 + 1) = 7
 
Theorem7p1e8 9183 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.)
(7 + 1) = 8
 
Theorem8p1e9 9184 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.)
(8 + 1) = 9
 
Theorem3p2e5 9185 3 + 2 = 5. (Contributed by NM, 11-May-2004.)
(3 + 2) = 5
 
Theorem3p3e6 9186 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
(3 + 3) = 6
 
Theorem4p2e6 9187 4 + 2 = 6. (Contributed by NM, 11-May-2004.)
(4 + 2) = 6
 
Theorem4p3e7 9188 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
(4 + 3) = 7
 
Theorem4p4e8 9189 4 + 4 = 8. (Contributed by NM, 11-May-2004.)
(4 + 4) = 8
 
Theorem5p2e7 9190 5 + 2 = 7. (Contributed by NM, 11-May-2004.)
(5 + 2) = 7
 
Theorem5p3e8 9191 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
(5 + 3) = 8
 
Theorem5p4e9 9192 5 + 4 = 9. (Contributed by NM, 11-May-2004.)
(5 + 4) = 9
 
Theorem6p2e8 9193 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
(6 + 2) = 8
 
Theorem6p3e9 9194 6 + 3 = 9. (Contributed by NM, 11-May-2004.)
(6 + 3) = 9
 
Theorem7p2e9 9195 7 + 2 = 9. (Contributed by NM, 11-May-2004.)
(7 + 2) = 9
 
Theorem1t1e1 9196 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
(1 · 1) = 1
 
Theorem2t1e2 9197 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.)
(2 · 1) = 2
 
Theorem2t2e4 9198 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.)
(2 · 2) = 4
 
Theorem3t1e3 9199 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.)
(3 · 1) = 3
 
Theorem3t2e6 9200 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.)
(3 · 2) = 6
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >