| Intuitionistic Logic Explorer Theorem List (p. 92 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nnge1 9101 | A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | ||
| Theorem | nnle1eq1 9102 | A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1)) | ||
| Theorem | nngt0 9103 | A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | ||
| Theorem | nnnlt1 9104 | A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 < 1) | ||
| Theorem | 0nnn 9105 | Zero is not a positive integer. (Contributed by NM, 25-Aug-1999.) |
| ⊢ ¬ 0 ∈ ℕ | ||
| Theorem | nnne0 9106 | A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | nnap0 9107 | A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 # 0) | ||
| Theorem | nngt0i 9108 | A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 0 < 𝐴 | ||
| Theorem | nnap0i 9109 | A positive integer is apart from zero (inference version). (Contributed by Jim Kingdon, 1-Jan-2023.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 # 0 | ||
| Theorem | nnne0i 9110 | A positive integer is nonzero (inference version). (Contributed by NM, 25-Aug-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ≠ 0 | ||
| Theorem | nn2ge 9111* | There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) | ||
| Theorem | nn1gt1 9112 | A positive integer is either one or greater than one. This is for ℕ; 0elnn 4688 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) | ||
| Theorem | nngt1ne1 9113 | A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.) |
| ⊢ (𝐴 ∈ ℕ → (1 < 𝐴 ↔ 𝐴 ≠ 1)) | ||
| Theorem | nndivre 9114 | The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) | ||
| Theorem | nnrecre 9115 | The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
| ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) | ||
| Theorem | nnrecgt0 9116 | The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 0 < (1 / 𝐴)) | ||
| Theorem | nnsub 9117 | Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ)) | ||
| Theorem | nnsubi 9118 | Subtraction of positive integers. (Contributed by NM, 19-Aug-2001.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ) | ||
| Theorem | nndiv 9119* | Two ways to express "𝐴 divides 𝐵 " for positive integers. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ)) | ||
| Theorem | nndivtr 9120 | Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ) | ||
| Theorem | nnge1d 9121 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 1 ≤ 𝐴) | ||
| Theorem | nngt0d 9122 | A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
| Theorem | nnne0d 9123 | A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
| Theorem | nnap0d 9124 | A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
| Theorem | nnrecred 9125 | The reciprocal of a positive integer is real. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) | ||
| Theorem | nnaddcld 9126 | Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcld 9127 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) | ||
| Theorem | nndivred 9128 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) | ||
The decimal representation of numbers/integers is based on the decimal digits 0 through 9 (df-0 7974 through df-9 9144), which are explicitly defined in the following. Note that the numbers 0 and 1 are constants defined as primitives of the complex number axiom system (see df-0 7974 and df-1 7975). Integers can also be exhibited as sums of powers of 10 (e.g., the number 103 can be expressed as ((;10↑2) + 3)) or as some other expression built from operations on the numbers 0 through 9. For example, the prime number 823541 can be expressed as (7↑7) − 2. Most abstract math rarely requires numbers larger than 4. Even in Wiles' proof of Fermat's Last Theorem, the largest number used appears to be 12. | ||
| Syntax | c2 9129 | Extend class notation to include the number 2. |
| class 2 | ||
| Syntax | c3 9130 | Extend class notation to include the number 3. |
| class 3 | ||
| Syntax | c4 9131 | Extend class notation to include the number 4. |
| class 4 | ||
| Syntax | c5 9132 | Extend class notation to include the number 5. |
| class 5 | ||
| Syntax | c6 9133 | Extend class notation to include the number 6. |
| class 6 | ||
| Syntax | c7 9134 | Extend class notation to include the number 7. |
| class 7 | ||
| Syntax | c8 9135 | Extend class notation to include the number 8. |
| class 8 | ||
| Syntax | c9 9136 | Extend class notation to include the number 9. |
| class 9 | ||
| Definition | df-2 9137 | Define the number 2. (Contributed by NM, 27-May-1999.) |
| ⊢ 2 = (1 + 1) | ||
| Definition | df-3 9138 | Define the number 3. (Contributed by NM, 27-May-1999.) |
| ⊢ 3 = (2 + 1) | ||
| Definition | df-4 9139 | Define the number 4. (Contributed by NM, 27-May-1999.) |
| ⊢ 4 = (3 + 1) | ||
| Definition | df-5 9140 | Define the number 5. (Contributed by NM, 27-May-1999.) |
| ⊢ 5 = (4 + 1) | ||
| Definition | df-6 9141 | Define the number 6. (Contributed by NM, 27-May-1999.) |
| ⊢ 6 = (5 + 1) | ||
| Definition | df-7 9142 | Define the number 7. (Contributed by NM, 27-May-1999.) |
| ⊢ 7 = (6 + 1) | ||
| Definition | df-8 9143 | Define the number 8. (Contributed by NM, 27-May-1999.) |
| ⊢ 8 = (7 + 1) | ||
| Definition | df-9 9144 | Define the number 9. (Contributed by NM, 27-May-1999.) |
| ⊢ 9 = (8 + 1) | ||
| Theorem | 0ne1 9145 | 0 ≠ 1 (common case). See aso 1ap0 8705. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 ≠ 1 | ||
| Theorem | 1ne0 9146 | 1 ≠ 0. See aso 1ap0 8705. (Contributed by Jim Kingdon, 9-Mar-2020.) |
| ⊢ 1 ≠ 0 | ||
| Theorem | 1m1e0 9147 | (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ (1 − 1) = 0 | ||
| Theorem | 2re 9148 | The number 2 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 2 ∈ ℝ | ||
| Theorem | 2cn 9149 | The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| ⊢ 2 ∈ ℂ | ||
| Theorem | 2ex 9150 | 2 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 2 ∈ V | ||
| Theorem | 2cnd 9151 | 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 2 ∈ ℂ) | ||
| Theorem | 3re 9152 | The number 3 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 3 ∈ ℝ | ||
| Theorem | 3cn 9153 | The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
| ⊢ 3 ∈ ℂ | ||
| Theorem | 3ex 9154 | 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 3 ∈ V | ||
| Theorem | 4re 9155 | The number 4 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 4 ∈ ℝ | ||
| Theorem | 4cn 9156 | The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 4 ∈ ℂ | ||
| Theorem | 5re 9157 | The number 5 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 5 ∈ ℝ | ||
| Theorem | 5cn 9158 | The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 5 ∈ ℂ | ||
| Theorem | 6re 9159 | The number 6 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 6 ∈ ℝ | ||
| Theorem | 6cn 9160 | The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 6 ∈ ℂ | ||
| Theorem | 7re 9161 | The number 7 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 7 ∈ ℝ | ||
| Theorem | 7cn 9162 | The number 7 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 7 ∈ ℂ | ||
| Theorem | 8re 9163 | The number 8 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 8 ∈ ℝ | ||
| Theorem | 8cn 9164 | The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 8 ∈ ℂ | ||
| Theorem | 9re 9165 | The number 9 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 9 ∈ ℝ | ||
| Theorem | 9cn 9166 | The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 9 ∈ ℂ | ||
| Theorem | 0le0 9167 | Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 0 ≤ 0 | ||
| Theorem | 0le2 9168 | 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| ⊢ 0 ≤ 2 | ||
| Theorem | 2pos 9169 | The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 2 | ||
| Theorem | 2ne0 9170 | The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.) |
| ⊢ 2 ≠ 0 | ||
| Theorem | 2ap0 9171 | The number 2 is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.) |
| ⊢ 2 # 0 | ||
| Theorem | 3pos 9172 | The number 3 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 3 | ||
| Theorem | 3ne0 9173 | The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| ⊢ 3 ≠ 0 | ||
| Theorem | 3ap0 9174 | The number 3 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.) |
| ⊢ 3 # 0 | ||
| Theorem | 4pos 9175 | The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 4 | ||
| Theorem | 4ne0 9176 | The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| ⊢ 4 ≠ 0 | ||
| Theorem | 4ap0 9177 | The number 4 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.) |
| ⊢ 4 # 0 | ||
| Theorem | 5pos 9178 | The number 5 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 5 | ||
| Theorem | 6pos 9179 | The number 6 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 6 | ||
| Theorem | 7pos 9180 | The number 7 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 7 | ||
| Theorem | 8pos 9181 | The number 8 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 8 | ||
| Theorem | 9pos 9182 | The number 9 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 9 | ||
This includes adding two pairs of values 1..10 (where the right is less than the left) and where the left is less than the right for the values 1..10. | ||
| Theorem | neg1cn 9183 | -1 is a complex number (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ -1 ∈ ℂ | ||
| Theorem | neg1rr 9184 | -1 is a real number (common case). (Contributed by David A. Wheeler, 5-Dec-2018.) |
| ⊢ -1 ∈ ℝ | ||
| Theorem | neg1ne0 9185 | -1 is nonzero (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -1 ≠ 0 | ||
| Theorem | neg1lt0 9186 | -1 is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -1 < 0 | ||
| Theorem | neg1ap0 9187 | -1 is apart from zero. (Contributed by Jim Kingdon, 9-Jun-2020.) |
| ⊢ -1 # 0 | ||
| Theorem | negneg1e1 9188 | --1 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ --1 = 1 | ||
| Theorem | 1pneg1e0 9189 | 1 + -1 is 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (1 + -1) = 0 | ||
| Theorem | 0m0e0 9190 | 0 minus 0 equals 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (0 − 0) = 0 | ||
| Theorem | 1m0e1 9191 | 1 - 0 = 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (1 − 0) = 1 | ||
| Theorem | 0p1e1 9192 | 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ (0 + 1) = 1 | ||
| Theorem | fv0p1e1 9193 | Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
| ⊢ (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1)) | ||
| Theorem | 1p0e1 9194 | 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (1 + 0) = 1 | ||
| Theorem | 1p1e2 9195 | 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
| ⊢ (1 + 1) = 2 | ||
| Theorem | 2m1e1 9196 | 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 9224. (Contributed by David A. Wheeler, 4-Jan-2017.) |
| ⊢ (2 − 1) = 1 | ||
| Theorem | 1e2m1 9197 | 1 = 2 - 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 1 = (2 − 1) | ||
| Theorem | 3m1e2 9198 | 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.) |
| ⊢ (3 − 1) = 2 | ||
| Theorem | 4m1e3 9199 | 4 - 1 = 3. (Contributed by AV, 8-Feb-2021.) (Proof shortened by AV, 6-Sep-2021.) |
| ⊢ (4 − 1) = 3 | ||
| Theorem | 5m1e4 9200 | 5 - 1 = 4. (Contributed by AV, 6-Sep-2021.) |
| ⊢ (5 − 1) = 4 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |