![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ssz | GIF version |
Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0ssz | ⊢ ℕ0 ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9244 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnssz 9337 | . . 3 ⊢ ℕ ⊆ ℤ | |
3 | 0z 9331 | . . . 4 ⊢ 0 ∈ ℤ | |
4 | c0ex 8015 | . . . . 5 ⊢ 0 ∈ V | |
5 | 4 | snss 3754 | . . . 4 ⊢ (0 ∈ ℤ ↔ {0} ⊆ ℤ) |
6 | 3, 5 | mpbi 145 | . . 3 ⊢ {0} ⊆ ℤ |
7 | 2, 6 | unssi 3335 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℤ |
8 | 1, 7 | eqsstri 3212 | 1 ⊢ ℕ0 ⊆ ℤ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∪ cun 3152 ⊆ wss 3154 {csn 3619 0cc0 7874 ℕcn 8984 ℕ0cn0 9243 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 |
This theorem is referenced by: nn0z 9340 nn0zi 9342 nn0zd 9440 nn0ssq 9696 oddnn02np1 12024 evennn02n 12026 eulerthlemrprm 12370 eulerthlema 12371 eulerthlemh 12372 eulerthlemth 12373 pcprecl 12430 pcprendvds 12431 pcpremul 12434 |
Copyright terms: Public domain | W3C validator |