| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ssz | GIF version | ||
| Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0ssz | ⊢ ℕ0 ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9378 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssz 9471 | . . 3 ⊢ ℕ ⊆ ℤ | |
| 3 | 0z 9465 | . . . 4 ⊢ 0 ∈ ℤ | |
| 4 | c0ex 8148 | . . . . 5 ⊢ 0 ∈ V | |
| 5 | 4 | snss 3803 | . . . 4 ⊢ (0 ∈ ℤ ↔ {0} ⊆ ℤ) |
| 6 | 3, 5 | mpbi 145 | . . 3 ⊢ {0} ⊆ ℤ |
| 7 | 2, 6 | unssi 3379 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℤ |
| 8 | 1, 7 | eqsstri 3256 | 1 ⊢ ℕ0 ⊆ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∪ cun 3195 ⊆ wss 3197 {csn 3666 0cc0 8007 ℕcn 9118 ℕ0cn0 9377 ℤcz 9454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 |
| This theorem is referenced by: nn0z 9474 nn0zi 9476 nn0zd 9575 nn0ssq 9831 oddnn02np1 12399 evennn02n 12401 eulerthlemrprm 12759 eulerthlema 12760 eulerthlemh 12761 eulerthlemth 12762 pcprecl 12820 pcprendvds 12821 pcpremul 12824 |
| Copyright terms: Public domain | W3C validator |