Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnn0 | GIF version |
Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9136 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | 1 | eleq2i 2237 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) |
3 | elun 3268 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
4 | c0ex 7914 | . . . 4 ⊢ 0 ∈ V | |
5 | 4 | elsn2 3617 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) |
6 | 5 | orbi2i 757 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
7 | 2, 3, 6 | 3bitri 205 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 {csn 3583 0cc0 7774 ℕcn 8878 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-i2m1 7879 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-n0 9136 |
This theorem is referenced by: 0nn0 9150 nn0ge0 9160 nnnn0addcl 9165 nnm1nn0 9176 elnnnn0b 9179 elnn0z 9225 elznn0nn 9226 elznn0 9227 elznn 9228 nn0ind-raph 9329 nn0ledivnn 9724 expp1 10483 expnegap0 10484 expcllem 10487 nn0ltexp2 10644 facp1 10664 faclbnd 10675 faclbnd3 10677 bcn1 10692 bcval5 10697 hashnncl 10730 fz1f1o 11338 arisum 11461 arisum2 11462 fprodfac 11578 ef0lem 11623 nn0enne 11861 nn0o1gt2 11864 dfgcd2 11969 mulgcd 11971 eucalgf 12009 eucalginv 12010 prmdvdsexpr 12104 rpexp1i 12108 nn0gcdsq 12154 odzdvds 12199 pceq0 12275 fldivp1 12300 pockthg 12309 1arith 12319 dvexp2 13470 lgsdir 13730 lgsabs1 13734 2sqlem7 13751 |
Copyright terms: Public domain | W3C validator |