| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0 | GIF version | ||
| Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9295 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | 1 | eleq2i 2271 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) |
| 3 | elun 3313 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
| 4 | c0ex 8065 | . . . 4 ⊢ 0 ∈ V | |
| 5 | 4 | elsn2 3666 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) |
| 6 | 5 | orbi2i 763 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| 7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ∪ cun 3163 {csn 3632 0cc0 7924 ℕcn 9035 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-mulcl 8022 ax-i2m1 8029 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-n0 9295 |
| This theorem is referenced by: 0nn0 9309 nn0ge0 9319 nnnn0addcl 9324 nnm1nn0 9335 elnnnn0b 9338 elnn0z 9384 elznn0nn 9385 elznn0 9386 elznn 9387 nn0ind-raph 9489 nn0ledivnn 9888 expp1 10689 expnegap0 10690 expcllem 10693 nn0ltexp2 10852 facp1 10873 faclbnd 10884 faclbnd3 10886 bcn1 10901 bcval5 10906 hashnncl 10938 fz1f1o 11628 arisum 11751 arisum2 11752 fprodfac 11868 ef0lem 11913 nn0enne 12155 nn0o1gt2 12158 dfgcd2 12277 mulgcd 12279 eucalgf 12319 eucalginv 12320 prmdvdsexpr 12414 rpexp1i 12418 nn0gcdsq 12464 odzdvds 12510 pceq0 12587 fldivp1 12613 pockthg 12622 1arith 12632 4sqlem17 12672 4sqlem19 12674 mulgnn0gsum 13406 mulgnn0p1 13411 mulgnn0subcl 13413 mulgneg 13418 mulgnn0z 13427 mulgnn0dir 13430 mulgnn0ass 13436 submmulg 13444 znf1o 14355 dvexp2 15126 dvply1 15179 lgsdir 15454 lgsabs1 15458 lgseisenlem1 15489 2sqlem7 15540 |
| Copyright terms: Public domain | W3C validator |