| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0 | GIF version | ||
| Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9269 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) |
| 3 | elun 3305 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
| 4 | c0ex 8039 | . . . 4 ⊢ 0 ∈ V | |
| 5 | 4 | elsn2 3657 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) |
| 6 | 5 | orbi2i 763 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| 7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {csn 3623 0cc0 7898 ℕcn 9009 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-i2m1 8003 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-n0 9269 |
| This theorem is referenced by: 0nn0 9283 nn0ge0 9293 nnnn0addcl 9298 nnm1nn0 9309 elnnnn0b 9312 elnn0z 9358 elznn0nn 9359 elznn0 9360 elznn 9361 nn0ind-raph 9462 nn0ledivnn 9861 expp1 10657 expnegap0 10658 expcllem 10661 nn0ltexp2 10820 facp1 10841 faclbnd 10852 faclbnd3 10854 bcn1 10869 bcval5 10874 hashnncl 10906 fz1f1o 11559 arisum 11682 arisum2 11683 fprodfac 11799 ef0lem 11844 nn0enne 12086 nn0o1gt2 12089 dfgcd2 12208 mulgcd 12210 eucalgf 12250 eucalginv 12251 prmdvdsexpr 12345 rpexp1i 12349 nn0gcdsq 12395 odzdvds 12441 pceq0 12518 fldivp1 12544 pockthg 12553 1arith 12563 4sqlem17 12603 4sqlem19 12605 mulgnn0gsum 13336 mulgnn0p1 13341 mulgnn0subcl 13343 mulgneg 13348 mulgnn0z 13357 mulgnn0dir 13360 mulgnn0ass 13366 submmulg 13374 znf1o 14285 dvexp2 15056 dvply1 15109 lgsdir 15384 lgsabs1 15388 lgseisenlem1 15419 2sqlem7 15470 |
| Copyright terms: Public domain | W3C validator |