![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnn0 | GIF version |
Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9244 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | 1 | eleq2i 2260 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) |
3 | elun 3301 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
4 | c0ex 8015 | . . . 4 ⊢ 0 ∈ V | |
5 | 4 | elsn2 3653 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) |
6 | 5 | orbi2i 763 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 {csn 3619 0cc0 7874 ℕcn 8984 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-i2m1 7979 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-n0 9244 |
This theorem is referenced by: 0nn0 9258 nn0ge0 9268 nnnn0addcl 9273 nnm1nn0 9284 elnnnn0b 9287 elnn0z 9333 elznn0nn 9334 elznn0 9335 elznn 9336 nn0ind-raph 9437 nn0ledivnn 9836 expp1 10620 expnegap0 10621 expcllem 10624 nn0ltexp2 10783 facp1 10804 faclbnd 10815 faclbnd3 10817 bcn1 10832 bcval5 10837 hashnncl 10869 fz1f1o 11521 arisum 11644 arisum2 11645 fprodfac 11761 ef0lem 11806 nn0enne 12046 nn0o1gt2 12049 dfgcd2 12154 mulgcd 12156 eucalgf 12196 eucalginv 12197 prmdvdsexpr 12291 rpexp1i 12295 nn0gcdsq 12341 odzdvds 12386 pceq0 12463 fldivp1 12489 pockthg 12498 1arith 12508 4sqlem17 12548 4sqlem19 12550 mulgnn0gsum 13201 mulgnn0p1 13206 mulgnn0subcl 13208 mulgneg 13213 mulgnn0z 13222 mulgnn0dir 13225 mulgnn0ass 13231 submmulg 13239 znf1o 14150 dvexp2 14891 dvply1 14943 lgsdir 15192 lgsabs1 15196 lgseisenlem1 15227 2sqlem7 15278 |
Copyright terms: Public domain | W3C validator |