| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0 | GIF version | ||
| Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9316 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) |
| 3 | elun 3318 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
| 4 | c0ex 8086 | . . . 4 ⊢ 0 ∈ V | |
| 5 | 4 | elsn2 3672 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) |
| 6 | 5 | orbi2i 764 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| 7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∪ cun 3168 {csn 3638 0cc0 7945 ℕcn 9056 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-mulcl 8043 ax-i2m1 8050 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-n0 9316 |
| This theorem is referenced by: 0nn0 9330 nn0ge0 9340 nnnn0addcl 9345 nnm1nn0 9356 elnnnn0b 9359 elnn0z 9405 elznn0nn 9406 elznn0 9407 elznn 9408 nn0ind-raph 9510 nn0ledivnn 9909 expp1 10713 expnegap0 10714 expcllem 10717 nn0ltexp2 10876 facp1 10897 faclbnd 10908 faclbnd3 10910 bcn1 10925 bcval5 10930 hashnncl 10962 fz1f1o 11761 arisum 11884 arisum2 11885 fprodfac 12001 ef0lem 12046 nn0enne 12288 nn0o1gt2 12291 dfgcd2 12410 mulgcd 12412 eucalgf 12452 eucalginv 12453 prmdvdsexpr 12547 rpexp1i 12551 nn0gcdsq 12597 odzdvds 12643 pceq0 12720 fldivp1 12746 pockthg 12755 1arith 12765 4sqlem17 12805 4sqlem19 12807 mulgnn0gsum 13539 mulgnn0p1 13544 mulgnn0subcl 13546 mulgneg 13551 mulgnn0z 13560 mulgnn0dir 13563 mulgnn0ass 13569 submmulg 13577 znf1o 14488 dvexp2 15259 dvply1 15312 lgsdir 15587 lgsabs1 15591 lgseisenlem1 15622 2sqlem7 15673 |
| Copyright terms: Public domain | W3C validator |