Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnn0 | GIF version |
Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9115 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | 1 | eleq2i 2233 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) |
3 | elun 3263 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
4 | c0ex 7893 | . . . 4 ⊢ 0 ∈ V | |
5 | 4 | elsn2 3610 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) |
6 | 5 | orbi2i 752 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
7 | 2, 3, 6 | 3bitri 205 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∪ cun 3114 {csn 3576 0cc0 7753 ℕcn 8857 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-i2m1 7858 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-n0 9115 |
This theorem is referenced by: 0nn0 9129 nn0ge0 9139 nnnn0addcl 9144 nnm1nn0 9155 elnnnn0b 9158 elnn0z 9204 elznn0nn 9205 elznn0 9206 elznn 9207 nn0ind-raph 9308 nn0ledivnn 9703 expp1 10462 expnegap0 10463 expcllem 10466 nn0ltexp2 10623 facp1 10643 faclbnd 10654 faclbnd3 10656 bcn1 10671 bcval5 10676 hashnncl 10709 fz1f1o 11316 arisum 11439 arisum2 11440 fprodfac 11556 ef0lem 11601 nn0enne 11839 nn0o1gt2 11842 dfgcd2 11947 mulgcd 11949 eucalgf 11987 eucalginv 11988 prmdvdsexpr 12082 rpexp1i 12086 nn0gcdsq 12132 odzdvds 12177 pceq0 12253 fldivp1 12278 pockthg 12287 1arith 12297 dvexp2 13316 lgsdir 13576 lgsabs1 13580 2sqlem7 13597 |
Copyright terms: Public domain | W3C validator |