| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0 | GIF version | ||
| Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9267 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) |
| 3 | elun 3305 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
| 4 | c0ex 8037 | . . . 4 ⊢ 0 ∈ V | |
| 5 | 4 | elsn2 3657 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) |
| 6 | 5 | orbi2i 763 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| 7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {csn 3623 0cc0 7896 ℕcn 9007 ℕ0cn0 9266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-i2m1 8001 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-n0 9267 |
| This theorem is referenced by: 0nn0 9281 nn0ge0 9291 nnnn0addcl 9296 nnm1nn0 9307 elnnnn0b 9310 elnn0z 9356 elznn0nn 9357 elznn0 9358 elznn 9359 nn0ind-raph 9460 nn0ledivnn 9859 expp1 10655 expnegap0 10656 expcllem 10659 nn0ltexp2 10818 facp1 10839 faclbnd 10850 faclbnd3 10852 bcn1 10867 bcval5 10872 hashnncl 10904 fz1f1o 11557 arisum 11680 arisum2 11681 fprodfac 11797 ef0lem 11842 nn0enne 12084 nn0o1gt2 12087 dfgcd2 12206 mulgcd 12208 eucalgf 12248 eucalginv 12249 prmdvdsexpr 12343 rpexp1i 12347 nn0gcdsq 12393 odzdvds 12439 pceq0 12516 fldivp1 12542 pockthg 12551 1arith 12561 4sqlem17 12601 4sqlem19 12603 mulgnn0gsum 13334 mulgnn0p1 13339 mulgnn0subcl 13341 mulgneg 13346 mulgnn0z 13355 mulgnn0dir 13358 mulgnn0ass 13364 submmulg 13372 znf1o 14283 dvexp2 15032 dvply1 15085 lgsdir 15360 lgsabs1 15364 lgseisenlem1 15395 2sqlem7 15446 |
| Copyright terms: Public domain | W3C validator |