| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elnn0 | GIF version | ||
| Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) | 
| Ref | Expression | 
|---|---|
| elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-n0 9250 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) | 
| 3 | elun 3304 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
| 4 | c0ex 8020 | . . . 4 ⊢ 0 ∈ V | |
| 5 | 4 | elsn2 3656 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) | 
| 6 | 5 | orbi2i 763 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | 
| 7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {csn 3622 0cc0 7879 ℕcn 8990 ℕ0cn0 9249 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-i2m1 7984 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-n0 9250 | 
| This theorem is referenced by: 0nn0 9264 nn0ge0 9274 nnnn0addcl 9279 nnm1nn0 9290 elnnnn0b 9293 elnn0z 9339 elznn0nn 9340 elznn0 9341 elznn 9342 nn0ind-raph 9443 nn0ledivnn 9842 expp1 10638 expnegap0 10639 expcllem 10642 nn0ltexp2 10801 facp1 10822 faclbnd 10833 faclbnd3 10835 bcn1 10850 bcval5 10855 hashnncl 10887 fz1f1o 11540 arisum 11663 arisum2 11664 fprodfac 11780 ef0lem 11825 nn0enne 12067 nn0o1gt2 12070 dfgcd2 12181 mulgcd 12183 eucalgf 12223 eucalginv 12224 prmdvdsexpr 12318 rpexp1i 12322 nn0gcdsq 12368 odzdvds 12414 pceq0 12491 fldivp1 12517 pockthg 12526 1arith 12536 4sqlem17 12576 4sqlem19 12578 mulgnn0gsum 13258 mulgnn0p1 13263 mulgnn0subcl 13265 mulgneg 13270 mulgnn0z 13279 mulgnn0dir 13282 mulgnn0ass 13288 submmulg 13296 znf1o 14207 dvexp2 14948 dvply1 15001 lgsdir 15276 lgsabs1 15280 lgseisenlem1 15311 2sqlem7 15362 | 
| Copyright terms: Public domain | W3C validator |