| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0 | GIF version | ||
| Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9366 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | 1 | eleq2i 2296 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) |
| 3 | elun 3345 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
| 4 | c0ex 8136 | . . . 4 ⊢ 0 ∈ V | |
| 5 | 4 | elsn2 3700 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) |
| 6 | 5 | orbi2i 767 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| 7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 {csn 3666 0cc0 7995 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-i2m1 8100 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-n0 9366 |
| This theorem is referenced by: 0nn0 9380 nn0ge0 9390 nnnn0addcl 9395 nnm1nn0 9406 elnnnn0b 9409 elnn0z 9455 elznn0nn 9456 elznn0 9457 elznn 9458 nn0ind-raph 9560 nn0ledivnn 9959 expp1 10763 expnegap0 10764 expcllem 10767 nn0ltexp2 10926 facp1 10947 faclbnd 10958 faclbnd3 10960 bcn1 10975 bcval5 10980 hashnncl 11012 fz1f1o 11881 arisum 12004 arisum2 12005 fprodfac 12121 ef0lem 12166 nn0enne 12408 nn0o1gt2 12411 dfgcd2 12530 mulgcd 12532 eucalgf 12572 eucalginv 12573 prmdvdsexpr 12667 rpexp1i 12671 nn0gcdsq 12717 odzdvds 12763 pceq0 12840 fldivp1 12866 pockthg 12875 1arith 12885 4sqlem17 12925 4sqlem19 12927 mulgnn0gsum 13660 mulgnn0p1 13665 mulgnn0subcl 13667 mulgneg 13672 mulgnn0z 13681 mulgnn0dir 13684 mulgnn0ass 13690 submmulg 13698 znf1o 14609 dvexp2 15380 dvply1 15433 lgsdir 15708 lgsabs1 15712 lgseisenlem1 15743 2sqlem7 15794 |
| Copyright terms: Public domain | W3C validator |