| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0 | GIF version | ||
| Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9278 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | 1 | eleq2i 2271 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) |
| 3 | elun 3313 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
| 4 | c0ex 8048 | . . . 4 ⊢ 0 ∈ V | |
| 5 | 4 | elsn2 3666 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) |
| 6 | 5 | orbi2i 763 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| 7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ∪ cun 3163 {csn 3632 0cc0 7907 ℕcn 9018 ℕ0cn0 9277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-1cn 8000 ax-icn 8002 ax-addcl 8003 ax-mulcl 8005 ax-i2m1 8012 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-n0 9278 |
| This theorem is referenced by: 0nn0 9292 nn0ge0 9302 nnnn0addcl 9307 nnm1nn0 9318 elnnnn0b 9321 elnn0z 9367 elznn0nn 9368 elznn0 9369 elznn 9370 nn0ind-raph 9472 nn0ledivnn 9871 expp1 10672 expnegap0 10673 expcllem 10676 nn0ltexp2 10835 facp1 10856 faclbnd 10867 faclbnd3 10869 bcn1 10884 bcval5 10889 hashnncl 10921 fz1f1o 11605 arisum 11728 arisum2 11729 fprodfac 11845 ef0lem 11890 nn0enne 12132 nn0o1gt2 12135 dfgcd2 12254 mulgcd 12256 eucalgf 12296 eucalginv 12297 prmdvdsexpr 12391 rpexp1i 12395 nn0gcdsq 12441 odzdvds 12487 pceq0 12564 fldivp1 12590 pockthg 12599 1arith 12609 4sqlem17 12649 4sqlem19 12651 mulgnn0gsum 13382 mulgnn0p1 13387 mulgnn0subcl 13389 mulgneg 13394 mulgnn0z 13403 mulgnn0dir 13406 mulgnn0ass 13412 submmulg 13420 znf1o 14331 dvexp2 15102 dvply1 15155 lgsdir 15430 lgsabs1 15434 lgseisenlem1 15465 2sqlem7 15516 |
| Copyright terms: Public domain | W3C validator |