ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgcl GIF version

Theorem subgcl 13564
Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subgcl.p + = (+g𝐺)
Assertion
Ref Expression
subgcl ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)

Proof of Theorem subgcl
StepHypRef Expression
1 eqid 2206 . . 3 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2 eqid 2206 . . 3 (+g‘(𝐺s 𝑆)) = (+g‘(𝐺s 𝑆))
3 eqid 2206 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
43subggrp 13557 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
543ad2ant1 1021 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝐺s 𝑆) ∈ Grp)
6 simp2 1001 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋𝑆)
73subgbas 13558 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
873ad2ant1 1021 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 = (Base‘(𝐺s 𝑆)))
96, 8eleqtrd 2285 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (Base‘(𝐺s 𝑆)))
10 simp3 1002 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌𝑆)
1110, 8eleqtrd 2285 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (Base‘(𝐺s 𝑆)))
121, 2, 5, 9, 11grpcld 13390 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋(+g‘(𝐺s 𝑆))𝑌) ∈ (Base‘(𝐺s 𝑆)))
13 eqidd 2207 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) = (𝐺s 𝑆))
14 subgcl.p . . . . . 6 + = (+g𝐺)
1514a1i 9 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → + = (+g𝐺))
16 id 19 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
17 subgrcl 13559 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1813, 15, 16, 17ressplusgd 13005 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → + = (+g‘(𝐺s 𝑆)))
19183ad2ant1 1021 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → + = (+g‘(𝐺s 𝑆)))
2019oveqd 5968 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) = (𝑋(+g‘(𝐺s 𝑆))𝑌))
2112, 20, 83eltr4d 2290 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  Basecbs 12876  s cress 12877  +gcplusg 12953  Grpcgrp 13376  SubGrpcsubg 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-subg 13550
This theorem is referenced by:  subgsubcl  13565  subgmulgcl  13567  issubg2m  13569  subgintm  13578  ssnmz  13591  eqger  13604  eqgcpbl  13608  resghm  13640  ghmpreima  13646  subrngacl  14014  subrgacl  14038  islss4  14188  dflidl2rng  14287
  Copyright terms: Public domain W3C validator