![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subgcl | GIF version |
Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subgcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
subgcl | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
2 | eqid 2193 | . . 3 ⊢ (+g‘(𝐺 ↾s 𝑆)) = (+g‘(𝐺 ↾s 𝑆)) | |
3 | eqid 2193 | . . . . 5 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
4 | 3 | subggrp 13247 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
5 | 4 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝐺 ↾s 𝑆) ∈ Grp) |
6 | simp2 1000 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
7 | 3 | subgbas 13248 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
8 | 7 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
9 | 6, 8 | eleqtrd 2272 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ (Base‘(𝐺 ↾s 𝑆))) |
10 | simp3 1001 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ 𝑆) | |
11 | 10, 8 | eleqtrd 2272 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ (Base‘(𝐺 ↾s 𝑆))) |
12 | 1, 2, 5, 9, 11 | grpcld 13086 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋(+g‘(𝐺 ↾s 𝑆))𝑌) ∈ (Base‘(𝐺 ↾s 𝑆))) |
13 | eqidd 2194 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆)) | |
14 | subgcl.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
15 | 14 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → + = (+g‘𝐺)) |
16 | id 19 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
17 | subgrcl 13249 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
18 | 13, 15, 16, 17 | ressplusgd 12746 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → + = (+g‘(𝐺 ↾s 𝑆))) |
19 | 18 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → + = (+g‘(𝐺 ↾s 𝑆))) |
20 | 19 | oveqd 5935 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑋(+g‘(𝐺 ↾s 𝑆))𝑌)) |
21 | 12, 20, 8 | 3eltr4d 2277 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 ↾s cress 12619 +gcplusg 12695 Grpcgrp 13072 SubGrpcsubg 13237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-subg 13240 |
This theorem is referenced by: subgsubcl 13255 subgmulgcl 13257 issubg2m 13259 subgintm 13268 ssnmz 13281 eqger 13294 eqgcpbl 13298 resghm 13330 ghmpreima 13336 subrngacl 13704 subrgacl 13728 islss4 13878 dflidl2rng 13977 |
Copyright terms: Public domain | W3C validator |