ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgcl GIF version

Theorem subgcl 13392
Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subgcl.p + = (+g𝐺)
Assertion
Ref Expression
subgcl ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)

Proof of Theorem subgcl
StepHypRef Expression
1 eqid 2196 . . 3 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2 eqid 2196 . . 3 (+g‘(𝐺s 𝑆)) = (+g‘(𝐺s 𝑆))
3 eqid 2196 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
43subggrp 13385 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
543ad2ant1 1020 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝐺s 𝑆) ∈ Grp)
6 simp2 1000 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋𝑆)
73subgbas 13386 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
873ad2ant1 1020 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 = (Base‘(𝐺s 𝑆)))
96, 8eleqtrd 2275 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (Base‘(𝐺s 𝑆)))
10 simp3 1001 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌𝑆)
1110, 8eleqtrd 2275 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (Base‘(𝐺s 𝑆)))
121, 2, 5, 9, 11grpcld 13218 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋(+g‘(𝐺s 𝑆))𝑌) ∈ (Base‘(𝐺s 𝑆)))
13 eqidd 2197 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) = (𝐺s 𝑆))
14 subgcl.p . . . . . 6 + = (+g𝐺)
1514a1i 9 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → + = (+g𝐺))
16 id 19 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
17 subgrcl 13387 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1813, 15, 16, 17ressplusgd 12833 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → + = (+g‘(𝐺s 𝑆)))
19183ad2ant1 1020 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → + = (+g‘(𝐺s 𝑆)))
2019oveqd 5942 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) = (𝑋(+g‘(𝐺s 𝑆))𝑌))
2112, 20, 83eltr4d 2280 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12705  s cress 12706  +gcplusg 12782  Grpcgrp 13204  SubGrpcsubg 13375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-subg 13378
This theorem is referenced by:  subgsubcl  13393  subgmulgcl  13395  issubg2m  13397  subgintm  13406  ssnmz  13419  eqger  13432  eqgcpbl  13436  resghm  13468  ghmpreima  13474  subrngacl  13842  subrgacl  13866  islss4  14016  dflidl2rng  14115
  Copyright terms: Public domain W3C validator