ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg GIF version

Theorem issubg 13243
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
issubg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
issubg (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))

Proof of Theorem issubg
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13240 . . 3 SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
21mptrcl 5640 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3 simp1 999 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) → 𝐺 ∈ Grp)
4 fveq2 5554 . . . . . . . . 9 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
5 issubg.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
64, 5eqtr4di 2244 . . . . . . . 8 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
76pweqd 3606 . . . . . . 7 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵)
8 oveq1 5925 . . . . . . . 8 (𝑤 = 𝐺 → (𝑤s 𝑠) = (𝐺s 𝑠))
98eleq1d 2262 . . . . . . 7 (𝑤 = 𝐺 → ((𝑤s 𝑠) ∈ Grp ↔ (𝐺s 𝑠) ∈ Grp))
107, 9rabeqbidv 2755 . . . . . 6 (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp})
11 id 19 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
12 basfn 12676 . . . . . . . . . 10 Base Fn V
13 elex 2771 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ V)
14 funfvex 5571 . . . . . . . . . . 11 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1514funfni 5354 . . . . . . . . . 10 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1612, 13, 15sylancr 414 . . . . . . . . 9 (𝐺 ∈ Grp → (Base‘𝐺) ∈ V)
175, 16eqeltrid 2280 . . . . . . . 8 (𝐺 ∈ Grp → 𝐵 ∈ V)
1817pwexd 4210 . . . . . . 7 (𝐺 ∈ Grp → 𝒫 𝐵 ∈ V)
19 rabexg 4172 . . . . . . 7 (𝒫 𝐵 ∈ V → {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
2018, 19syl 14 . . . . . 6 (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
211, 10, 11, 20fvmptd3 5651 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp})
2221eleq2d 2263 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp}))
23 oveq2 5926 . . . . . . 7 (𝑠 = 𝑆 → (𝐺s 𝑠) = (𝐺s 𝑆))
2423eleq1d 2262 . . . . . 6 (𝑠 = 𝑆 → ((𝐺s 𝑠) ∈ Grp ↔ (𝐺s 𝑆) ∈ Grp))
2524elrab 2916 . . . . 5 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
26 elpw2g 4185 . . . . . . 7 (𝐵 ∈ V → (𝑆 ∈ 𝒫 𝐵𝑆𝐵))
2717, 26syl 14 . . . . . 6 (𝐺 ∈ Grp → (𝑆 ∈ 𝒫 𝐵𝑆𝐵))
2827anbi1d 465 . . . . 5 (𝐺 ∈ Grp → ((𝑆 ∈ 𝒫 𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
2925, 28bitrid 192 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
30 ibar 301 . . . 4 (𝐺 ∈ Grp → ((𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))))
3122, 29, 303bitrd 214 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))))
32 3anass 984 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
3331, 32bitr4di 198 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
342, 3, 33pm5.21nii 705 1 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  {crab 2476  Vcvv 2760  wss 3153  𝒫 cpw 3601   Fn wfn 5249  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  Grpcgrp 13072  SubGrpcsubg 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-subg 13240
This theorem is referenced by:  subgss  13244  subgid  13245  subggrp  13247  subgbas  13248  subgrcl  13249  issubg2m  13259  resgrpisgrp  13265  subsubg  13267  opprsubgg  13580  subrngsubg  13700  subrgsubg  13723
  Copyright terms: Public domain W3C validator