| Step | Hyp | Ref
| Expression |
| 1 | | df-subg 13300 |
. . 3
⊢ SubGrp =
(𝑤 ∈ Grp ↦
{𝑠 ∈ 𝒫
(Base‘𝑤) ∣
(𝑤 ↾s
𝑠) ∈
Grp}) |
| 2 | 1 | mptrcl 5644 |
. 2
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 3 | | simp1 999 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp) → 𝐺 ∈ Grp) |
| 4 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺)) |
| 5 | | issubg.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
| 6 | 4, 5 | eqtr4di 2247 |
. . . . . . . 8
⊢ (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵) |
| 7 | 6 | pweqd 3610 |
. . . . . . 7
⊢ (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵) |
| 8 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑤 = 𝐺 → (𝑤 ↾s 𝑠) = (𝐺 ↾s 𝑠)) |
| 9 | 8 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑤 = 𝐺 → ((𝑤 ↾s 𝑠) ∈ Grp ↔ (𝐺 ↾s 𝑠) ∈ Grp)) |
| 10 | 7, 9 | rabeqbidv 2758 |
. . . . . 6
⊢ (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺 ↾s 𝑠) ∈ Grp}) |
| 11 | | id 19 |
. . . . . 6
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) |
| 12 | | basfn 12736 |
. . . . . . . . . 10
⊢ Base Fn
V |
| 13 | | elex 2774 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp → 𝐺 ∈ V) |
| 14 | | funfvex 5575 |
. . . . . . . . . . 11
⊢ ((Fun
Base ∧ 𝐺 ∈ dom
Base) → (Base‘𝐺)
∈ V) |
| 15 | 14 | funfni 5358 |
. . . . . . . . . 10
⊢ ((Base Fn
V ∧ 𝐺 ∈ V) →
(Base‘𝐺) ∈
V) |
| 16 | 12, 13, 15 | sylancr 414 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp →
(Base‘𝐺) ∈
V) |
| 17 | 5, 16 | eqeltrid 2283 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐵 ∈ V) |
| 18 | 17 | pwexd 4214 |
. . . . . . 7
⊢ (𝐺 ∈ Grp → 𝒫
𝐵 ∈
V) |
| 19 | | rabexg 4176 |
. . . . . . 7
⊢
(𝒫 𝐵 ∈
V → {𝑠 ∈
𝒫 𝐵 ∣ (𝐺 ↾s 𝑠) ∈ Grp} ∈
V) |
| 20 | 18, 19 | syl 14 |
. . . . . 6
⊢ (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺 ↾s 𝑠) ∈ Grp} ∈ V) |
| 21 | 1, 10, 11, 20 | fvmptd3 5655 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺 ↾s 𝑠) ∈ Grp}) |
| 22 | 21 | eleq2d 2266 |
. . . 4
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺 ↾s 𝑠) ∈ Grp})) |
| 23 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (𝐺 ↾s 𝑠) = (𝐺 ↾s 𝑆)) |
| 24 | 23 | eleq1d 2265 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝐺 ↾s 𝑠) ∈ Grp ↔ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 25 | 24 | elrab 2920 |
. . . . 5
⊢ (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺 ↾s 𝑠) ∈ Grp} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 26 | | elpw2g 4189 |
. . . . . . 7
⊢ (𝐵 ∈ V → (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵)) |
| 27 | 17, 26 | syl 14 |
. . . . . 6
⊢ (𝐺 ∈ Grp → (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵)) |
| 28 | 27 | anbi1d 465 |
. . . . 5
⊢ (𝐺 ∈ Grp → ((𝑆 ∈ 𝒫 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp))) |
| 29 | 25, 28 | bitrid 192 |
. . . 4
⊢ (𝐺 ∈ Grp → (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺 ↾s 𝑠) ∈ Grp} ↔ (𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp))) |
| 30 | | ibar 301 |
. . . 4
⊢ (𝐺 ∈ Grp → ((𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)))) |
| 31 | 22, 29, 30 | 3bitrd 214 |
. . 3
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)))) |
| 32 | | 3anass 984 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp))) |
| 33 | 31, 32 | bitr4di 198 |
. 2
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp))) |
| 34 | 2, 3, 33 | pm5.21nii 705 |
1
⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |