ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg GIF version

Theorem issubg 13705
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
issubg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
issubg (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))

Proof of Theorem issubg
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13702 . . 3 SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
21mptrcl 5716 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3 simp1 1021 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) → 𝐺 ∈ Grp)
4 fveq2 5626 . . . . . . . . 9 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
5 issubg.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
64, 5eqtr4di 2280 . . . . . . . 8 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
76pweqd 3654 . . . . . . 7 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵)
8 oveq1 6007 . . . . . . . 8 (𝑤 = 𝐺 → (𝑤s 𝑠) = (𝐺s 𝑠))
98eleq1d 2298 . . . . . . 7 (𝑤 = 𝐺 → ((𝑤s 𝑠) ∈ Grp ↔ (𝐺s 𝑠) ∈ Grp))
107, 9rabeqbidv 2794 . . . . . 6 (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp})
11 id 19 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
12 basfn 13086 . . . . . . . . . 10 Base Fn V
13 elex 2811 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ V)
14 funfvex 5643 . . . . . . . . . . 11 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1514funfni 5422 . . . . . . . . . 10 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1612, 13, 15sylancr 414 . . . . . . . . 9 (𝐺 ∈ Grp → (Base‘𝐺) ∈ V)
175, 16eqeltrid 2316 . . . . . . . 8 (𝐺 ∈ Grp → 𝐵 ∈ V)
1817pwexd 4264 . . . . . . 7 (𝐺 ∈ Grp → 𝒫 𝐵 ∈ V)
19 rabexg 4226 . . . . . . 7 (𝒫 𝐵 ∈ V → {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
2018, 19syl 14 . . . . . 6 (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
211, 10, 11, 20fvmptd3 5727 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp})
2221eleq2d 2299 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp}))
23 oveq2 6008 . . . . . . 7 (𝑠 = 𝑆 → (𝐺s 𝑠) = (𝐺s 𝑆))
2423eleq1d 2298 . . . . . 6 (𝑠 = 𝑆 → ((𝐺s 𝑠) ∈ Grp ↔ (𝐺s 𝑆) ∈ Grp))
2524elrab 2959 . . . . 5 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
26 elpw2g 4239 . . . . . . 7 (𝐵 ∈ V → (𝑆 ∈ 𝒫 𝐵𝑆𝐵))
2717, 26syl 14 . . . . . 6 (𝐺 ∈ Grp → (𝑆 ∈ 𝒫 𝐵𝑆𝐵))
2827anbi1d 465 . . . . 5 (𝐺 ∈ Grp → ((𝑆 ∈ 𝒫 𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
2925, 28bitrid 192 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
30 ibar 301 . . . 4 (𝐺 ∈ Grp → ((𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))))
3122, 29, 303bitrd 214 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))))
32 3anass 1006 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
3331, 32bitr4di 198 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
342, 3, 33pm5.21nii 709 1 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  {crab 2512  Vcvv 2799  wss 3197  𝒫 cpw 3649   Fn wfn 5312  cfv 5317  (class class class)co 6000  Basecbs 13027  s cress 13028  Grpcgrp 13528  SubGrpcsubg 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-subg 13702
This theorem is referenced by:  subgss  13706  subgid  13707  subggrp  13709  subgbas  13710  subgrcl  13711  issubg2m  13721  resgrpisgrp  13727  subsubg  13729  opprsubgg  14042  subrngsubg  14162  subrgsubg  14185
  Copyright terms: Public domain W3C validator