ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg GIF version

Theorem issubg 13594
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
issubg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
issubg (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))

Proof of Theorem issubg
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13591 . . 3 SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
21mptrcl 5680 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3 simp1 1000 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) → 𝐺 ∈ Grp)
4 fveq2 5594 . . . . . . . . 9 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
5 issubg.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
64, 5eqtr4di 2257 . . . . . . . 8 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
76pweqd 3626 . . . . . . 7 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 𝐵)
8 oveq1 5969 . . . . . . . 8 (𝑤 = 𝐺 → (𝑤s 𝑠) = (𝐺s 𝑠))
98eleq1d 2275 . . . . . . 7 (𝑤 = 𝐺 → ((𝑤s 𝑠) ∈ Grp ↔ (𝐺s 𝑠) ∈ Grp))
107, 9rabeqbidv 2768 . . . . . 6 (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp})
11 id 19 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
12 basfn 12975 . . . . . . . . . 10 Base Fn V
13 elex 2785 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ V)
14 funfvex 5611 . . . . . . . . . . 11 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1514funfni 5390 . . . . . . . . . 10 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1612, 13, 15sylancr 414 . . . . . . . . 9 (𝐺 ∈ Grp → (Base‘𝐺) ∈ V)
175, 16eqeltrid 2293 . . . . . . . 8 (𝐺 ∈ Grp → 𝐵 ∈ V)
1817pwexd 4236 . . . . . . 7 (𝐺 ∈ Grp → 𝒫 𝐵 ∈ V)
19 rabexg 4198 . . . . . . 7 (𝒫 𝐵 ∈ V → {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
2018, 19syl 14 . . . . . 6 (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
211, 10, 11, 20fvmptd3 5691 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp})
2221eleq2d 2276 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp}))
23 oveq2 5970 . . . . . . 7 (𝑠 = 𝑆 → (𝐺s 𝑠) = (𝐺s 𝑆))
2423eleq1d 2275 . . . . . 6 (𝑠 = 𝑆 → ((𝐺s 𝑠) ∈ Grp ↔ (𝐺s 𝑆) ∈ Grp))
2524elrab 2933 . . . . 5 (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ↔ (𝑆 ∈ 𝒫 𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
26 elpw2g 4211 . . . . . . 7 (𝐵 ∈ V → (𝑆 ∈ 𝒫 𝐵𝑆𝐵))
2717, 26syl 14 . . . . . 6 (𝐺 ∈ Grp → (𝑆 ∈ 𝒫 𝐵𝑆𝐵))
2827anbi1d 465 . . . . 5 (𝐺 ∈ Grp → ((𝑆 ∈ 𝒫 𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
2925, 28bitrid 192 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ (𝐺s 𝑠) ∈ Grp} ↔ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
30 ibar 301 . . . 4 (𝐺 ∈ Grp → ((𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))))
3122, 29, 303bitrd 214 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))))
32 3anass 985 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp) ↔ (𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
3331, 32bitr4di 198 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp)))
342, 3, 33pm5.21nii 706 1 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  wss 3170  𝒫 cpw 3621   Fn wfn 5280  cfv 5285  (class class class)co 5962  Basecbs 12917  s cress 12918  Grpcgrp 13417  SubGrpcsubg 13588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-ov 5965  df-inn 9067  df-ndx 12920  df-slot 12921  df-base 12923  df-subg 13591
This theorem is referenced by:  subgss  13595  subgid  13596  subggrp  13598  subgbas  13599  subgrcl  13600  issubg2m  13610  resgrpisgrp  13616  subsubg  13618  opprsubgg  13931  subrngsubg  14051  subrgsubg  14074
  Copyright terms: Public domain W3C validator