![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subg0 | GIF version |
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
subg0.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
subg0.i | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
subg0 | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subg0.h | . . . . . 6 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺 ↾s 𝑆)) |
3 | eqid 2193 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 3 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐺)) |
5 | id 19 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
6 | subgrcl 13249 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
7 | 2, 4, 5, 6 | ressplusgd 12746 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
8 | 7 | oveqd 5935 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻))) |
9 | 1 | subggrp 13247 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
10 | eqid 2193 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
11 | eqid 2193 | . . . . . 6 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
12 | 10, 11 | grpidcl 13101 | . . . . 5 ⊢ (𝐻 ∈ Grp → (0g‘𝐻) ∈ (Base‘𝐻)) |
13 | 9, 12 | syl 14 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ (Base‘𝐻)) |
14 | eqid 2193 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
15 | 10, 14, 11 | grplid 13103 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ (0g‘𝐻) ∈ (Base‘𝐻)) → ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻)) = (0g‘𝐻)) |
16 | 9, 13, 15 | syl2anc 411 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻)) = (0g‘𝐻)) |
17 | 8, 16 | eqtrd 2226 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻)) |
18 | eqid 2193 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
19 | 18 | subgss 13244 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
20 | 1 | subgbas 13248 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
21 | 13, 20 | eleqtrrd 2273 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ 𝑆) |
22 | 19, 21 | sseldd 3180 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ (Base‘𝐺)) |
23 | subg0.i | . . . 4 ⊢ 0 = (0g‘𝐺) | |
24 | 18, 3, 23 | grpid 13111 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (0g‘𝐻) ∈ (Base‘𝐺)) → (((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻) ↔ 0 = (0g‘𝐻))) |
25 | 6, 22, 24 | syl2anc 411 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻) ↔ 0 = (0g‘𝐻))) |
26 | 17, 25 | mpbid 147 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 ↾s cress 12619 +gcplusg 12695 0gc0g 12867 Grpcgrp 13072 SubGrpcsubg 13237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-subg 13240 |
This theorem is referenced by: subginv 13251 subg0cl 13252 subgmulg 13258 subrng0 13703 subrg0 13724 |
Copyright terms: Public domain | W3C validator |