ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subg0 GIF version

Theorem subg0 13253
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
subg0.h 𝐻 = (𝐺s 𝑆)
subg0.i 0 = (0g𝐺)
Assertion
Ref Expression
subg0 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g𝐻))

Proof of Theorem subg0
StepHypRef Expression
1 subg0.h . . . . . 6 𝐻 = (𝐺s 𝑆)
21a1i 9 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑆))
3 eqid 2193 . . . . . 6 (+g𝐺) = (+g𝐺)
43a1i 9 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐺))
5 id 19 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 subgrcl 13252 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
72, 4, 5, 6ressplusgd 12749 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
87oveqd 5936 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐺)(0g𝐻)) = ((0g𝐻)(+g𝐻)(0g𝐻)))
91subggrp 13250 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
10 eqid 2193 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
11 eqid 2193 . . . . . 6 (0g𝐻) = (0g𝐻)
1210, 11grpidcl 13104 . . . . 5 (𝐻 ∈ Grp → (0g𝐻) ∈ (Base‘𝐻))
139, 12syl 14 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ (Base‘𝐻))
14 eqid 2193 . . . . 5 (+g𝐻) = (+g𝐻)
1510, 14, 11grplid 13106 . . . 4 ((𝐻 ∈ Grp ∧ (0g𝐻) ∈ (Base‘𝐻)) → ((0g𝐻)(+g𝐻)(0g𝐻)) = (0g𝐻))
169, 13, 15syl2anc 411 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐻)(0g𝐻)) = (0g𝐻))
178, 16eqtrd 2226 . 2 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻))
18 eqid 2193 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
1918subgss 13247 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
201subgbas 13251 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
2113, 20eleqtrrd 2273 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ 𝑆)
2219, 21sseldd 3181 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ (Base‘𝐺))
23 subg0.i . . . 4 0 = (0g𝐺)
2418, 3, 23grpid 13114 . . 3 ((𝐺 ∈ Grp ∧ (0g𝐻) ∈ (Base‘𝐺)) → (((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻) ↔ 0 = (0g𝐻)))
256, 22, 24syl2anc 411 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻) ↔ 0 = (0g𝐻)))
2617, 25mpbid 147 1 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  +gcplusg 12698  0gc0g 12870  Grpcgrp 13075  SubGrpcsubg 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-subg 13243
This theorem is referenced by:  subginv  13254  subg0cl  13255  subgmulg  13261  subrng0  13706  subrg0  13727
  Copyright terms: Public domain W3C validator