ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subg0 GIF version

Theorem subg0 13250
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
subg0.h 𝐻 = (𝐺s 𝑆)
subg0.i 0 = (0g𝐺)
Assertion
Ref Expression
subg0 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g𝐻))

Proof of Theorem subg0
StepHypRef Expression
1 subg0.h . . . . . 6 𝐻 = (𝐺s 𝑆)
21a1i 9 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑆))
3 eqid 2193 . . . . . 6 (+g𝐺) = (+g𝐺)
43a1i 9 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐺))
5 id 19 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 subgrcl 13249 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
72, 4, 5, 6ressplusgd 12746 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
87oveqd 5935 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐺)(0g𝐻)) = ((0g𝐻)(+g𝐻)(0g𝐻)))
91subggrp 13247 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
10 eqid 2193 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
11 eqid 2193 . . . . . 6 (0g𝐻) = (0g𝐻)
1210, 11grpidcl 13101 . . . . 5 (𝐻 ∈ Grp → (0g𝐻) ∈ (Base‘𝐻))
139, 12syl 14 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ (Base‘𝐻))
14 eqid 2193 . . . . 5 (+g𝐻) = (+g𝐻)
1510, 14, 11grplid 13103 . . . 4 ((𝐻 ∈ Grp ∧ (0g𝐻) ∈ (Base‘𝐻)) → ((0g𝐻)(+g𝐻)(0g𝐻)) = (0g𝐻))
169, 13, 15syl2anc 411 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐻)(0g𝐻)) = (0g𝐻))
178, 16eqtrd 2226 . 2 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻))
18 eqid 2193 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
1918subgss 13244 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
201subgbas 13248 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
2113, 20eleqtrrd 2273 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ 𝑆)
2219, 21sseldd 3180 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ (Base‘𝐺))
23 subg0.i . . . 4 0 = (0g𝐺)
2418, 3, 23grpid 13111 . . 3 ((𝐺 ∈ Grp ∧ (0g𝐻) ∈ (Base‘𝐺)) → (((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻) ↔ 0 = (0g𝐻)))
256, 22, 24syl2anc 411 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻) ↔ 0 = (0g𝐻)))
2617, 25mpbid 147 1 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  +gcplusg 12695  0gc0g 12867  Grpcgrp 13072  SubGrpcsubg 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-subg 13240
This theorem is referenced by:  subginv  13251  subg0cl  13252  subgmulg  13258  subrng0  13703  subrg0  13724
  Copyright terms: Public domain W3C validator