![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subg0 | GIF version |
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
subg0.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
subg0.i | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
subg0 | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subg0.h | . . . . . 6 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺 ↾s 𝑆)) |
3 | eqid 2177 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 3 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐺)) |
5 | id 19 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
6 | subgrcl 13044 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
7 | 2, 4, 5, 6 | ressplusgd 12589 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
8 | 7 | oveqd 5894 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻))) |
9 | 1 | subggrp 13042 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
10 | eqid 2177 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
11 | eqid 2177 | . . . . . 6 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
12 | 10, 11 | grpidcl 12909 | . . . . 5 ⊢ (𝐻 ∈ Grp → (0g‘𝐻) ∈ (Base‘𝐻)) |
13 | 9, 12 | syl 14 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ (Base‘𝐻)) |
14 | eqid 2177 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
15 | 10, 14, 11 | grplid 12911 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ (0g‘𝐻) ∈ (Base‘𝐻)) → ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻)) = (0g‘𝐻)) |
16 | 9, 13, 15 | syl2anc 411 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻)) = (0g‘𝐻)) |
17 | 8, 16 | eqtrd 2210 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻)) |
18 | eqid 2177 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
19 | 18 | subgss 13039 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
20 | 1 | subgbas 13043 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
21 | 13, 20 | eleqtrrd 2257 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ 𝑆) |
22 | 19, 21 | sseldd 3158 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ (Base‘𝐺)) |
23 | subg0.i | . . . 4 ⊢ 0 = (0g‘𝐺) | |
24 | 18, 3, 23 | grpid 12917 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (0g‘𝐻) ∈ (Base‘𝐺)) → (((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻) ↔ 0 = (0g‘𝐻))) |
25 | 6, 22, 24 | syl2anc 411 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻) ↔ 0 = (0g‘𝐻))) |
26 | 17, 25 | mpbid 147 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ‘cfv 5218 (class class class)co 5877 Basecbs 12464 ↾s cress 12465 +gcplusg 12538 0gc0g 12710 Grpcgrp 12882 SubGrpcsubg 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-inn 8922 df-2 8980 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-iress 12472 df-plusg 12551 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-grp 12885 df-subg 13035 |
This theorem is referenced by: subginv 13046 subg0cl 13047 subgmulg 13053 subrg0 13354 |
Copyright terms: Public domain | W3C validator |