ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subg0 GIF version

Theorem subg0 13683
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
subg0.h 𝐻 = (𝐺s 𝑆)
subg0.i 0 = (0g𝐺)
Assertion
Ref Expression
subg0 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g𝐻))

Proof of Theorem subg0
StepHypRef Expression
1 subg0.h . . . . . 6 𝐻 = (𝐺s 𝑆)
21a1i 9 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑆))
3 eqid 2209 . . . . . 6 (+g𝐺) = (+g𝐺)
43a1i 9 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐺))
5 id 19 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 subgrcl 13682 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
72, 4, 5, 6ressplusgd 13128 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
87oveqd 5991 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐺)(0g𝐻)) = ((0g𝐻)(+g𝐻)(0g𝐻)))
91subggrp 13680 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
10 eqid 2209 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
11 eqid 2209 . . . . . 6 (0g𝐻) = (0g𝐻)
1210, 11grpidcl 13528 . . . . 5 (𝐻 ∈ Grp → (0g𝐻) ∈ (Base‘𝐻))
139, 12syl 14 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ (Base‘𝐻))
14 eqid 2209 . . . . 5 (+g𝐻) = (+g𝐻)
1510, 14, 11grplid 13530 . . . 4 ((𝐻 ∈ Grp ∧ (0g𝐻) ∈ (Base‘𝐻)) → ((0g𝐻)(+g𝐻)(0g𝐻)) = (0g𝐻))
169, 13, 15syl2anc 411 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐻)(0g𝐻)) = (0g𝐻))
178, 16eqtrd 2242 . 2 (𝑆 ∈ (SubGrp‘𝐺) → ((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻))
18 eqid 2209 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
1918subgss 13677 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
201subgbas 13681 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
2113, 20eleqtrrd 2289 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ 𝑆)
2219, 21sseldd 3205 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐻) ∈ (Base‘𝐺))
23 subg0.i . . . 4 0 = (0g𝐺)
2418, 3, 23grpid 13538 . . 3 ((𝐺 ∈ Grp ∧ (0g𝐻) ∈ (Base‘𝐺)) → (((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻) ↔ 0 = (0g𝐻)))
256, 22, 24syl2anc 411 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (((0g𝐻)(+g𝐺)(0g𝐻)) = (0g𝐻) ↔ 0 = (0g𝐻)))
2617, 25mpbid 147 1 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  Basecbs 12998  s cress 12999  +gcplusg 13076  0gc0g 13255  Grpcgrp 13499  SubGrpcsubg 13670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-subg 13673
This theorem is referenced by:  subginv  13684  subg0cl  13685  subgmulg  13691  subrng0  14136  subrg0  14157  mpl0fi  14631
  Copyright terms: Public domain W3C validator