| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subg0 | GIF version | ||
| Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| subg0.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| subg0.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| subg0 | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subg0.h | . . . . . 6 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺 ↾s 𝑆)) |
| 3 | eqid 2196 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐺)) |
| 5 | id 19 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 6 | subgrcl 13309 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 7 | 2, 4, 5, 6 | ressplusgd 12806 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
| 8 | 7 | oveqd 5939 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻))) |
| 9 | 1 | subggrp 13307 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 10 | eqid 2196 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 11 | eqid 2196 | . . . . . 6 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 12 | 10, 11 | grpidcl 13161 | . . . . 5 ⊢ (𝐻 ∈ Grp → (0g‘𝐻) ∈ (Base‘𝐻)) |
| 13 | 9, 12 | syl 14 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ (Base‘𝐻)) |
| 14 | eqid 2196 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 15 | 10, 14, 11 | grplid 13163 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ (0g‘𝐻) ∈ (Base‘𝐻)) → ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻)) = (0g‘𝐻)) |
| 16 | 9, 13, 15 | syl2anc 411 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻)) = (0g‘𝐻)) |
| 17 | 8, 16 | eqtrd 2229 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻)) |
| 18 | eqid 2196 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 19 | 18 | subgss 13304 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 20 | 1 | subgbas 13308 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 21 | 13, 20 | eleqtrrd 2276 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ 𝑆) |
| 22 | 19, 21 | sseldd 3184 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ (Base‘𝐺)) |
| 23 | subg0.i | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 24 | 18, 3, 23 | grpid 13171 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (0g‘𝐻) ∈ (Base‘𝐺)) → (((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻) ↔ 0 = (0g‘𝐻))) |
| 25 | 6, 22, 24 | syl2anc 411 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻) ↔ 0 = (0g‘𝐻))) |
| 26 | 17, 25 | mpbid 147 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 ↾s cress 12679 +gcplusg 12755 0gc0g 12927 Grpcgrp 13132 SubGrpcsubg 13297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-subg 13300 |
| This theorem is referenced by: subginv 13311 subg0cl 13312 subgmulg 13318 subrng0 13763 subrg0 13784 |
| Copyright terms: Public domain | W3C validator |