| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subg0 | GIF version | ||
| Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| subg0.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| subg0.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| subg0 | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subg0.h | . . . . . 6 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺 ↾s 𝑆)) |
| 3 | eqid 2206 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐺)) |
| 5 | id 19 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 6 | subgrcl 13559 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 7 | 2, 4, 5, 6 | ressplusgd 13005 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
| 8 | 7 | oveqd 5968 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻))) |
| 9 | 1 | subggrp 13557 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 10 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 11 | eqid 2206 | . . . . . 6 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 12 | 10, 11 | grpidcl 13405 | . . . . 5 ⊢ (𝐻 ∈ Grp → (0g‘𝐻) ∈ (Base‘𝐻)) |
| 13 | 9, 12 | syl 14 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ (Base‘𝐻)) |
| 14 | eqid 2206 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 15 | 10, 14, 11 | grplid 13407 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ (0g‘𝐻) ∈ (Base‘𝐻)) → ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻)) = (0g‘𝐻)) |
| 16 | 9, 13, 15 | syl2anc 411 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐻)(0g‘𝐻)) = (0g‘𝐻)) |
| 17 | 8, 16 | eqtrd 2239 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻)) |
| 18 | eqid 2206 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 19 | 18 | subgss 13554 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 20 | 1 | subgbas 13558 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 21 | 13, 20 | eleqtrrd 2286 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ 𝑆) |
| 22 | 19, 21 | sseldd 3195 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐻) ∈ (Base‘𝐺)) |
| 23 | subg0.i | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 24 | 18, 3, 23 | grpid 13415 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (0g‘𝐻) ∈ (Base‘𝐺)) → (((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻) ↔ 0 = (0g‘𝐻))) |
| 25 | 6, 22, 24 | syl2anc 411 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (((0g‘𝐻)(+g‘𝐺)(0g‘𝐻)) = (0g‘𝐻) ↔ 0 = (0g‘𝐻))) |
| 26 | 17, 25 | mpbid 147 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 ↾s cress 12877 +gcplusg 12953 0gc0g 13132 Grpcgrp 13376 SubGrpcsubg 13547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-subg 13550 |
| This theorem is referenced by: subginv 13561 subg0cl 13562 subgmulg 13568 subrng0 14013 subrg0 14034 mpl0fi 14508 |
| Copyright terms: Public domain | W3C validator |