| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subgex | GIF version | ||
| Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| subgex | ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-subg 13673 | . . 3 ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) | |
| 2 | fveq2 5603 | . . . . 5 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺)) | |
| 3 | 2 | pweqd 3634 | . . . 4 ⊢ (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝐺)) |
| 4 | oveq1 5981 | . . . . 5 ⊢ (𝑤 = 𝐺 → (𝑤 ↾s 𝑠) = (𝐺 ↾s 𝑠)) | |
| 5 | 4 | eleq1d 2278 | . . . 4 ⊢ (𝑤 = 𝐺 → ((𝑤 ↾s 𝑠) ∈ Grp ↔ (𝐺 ↾s 𝑠) ∈ Grp)) |
| 6 | 3, 5 | rabeqbidv 2774 | . . 3 ⊢ (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp}) |
| 7 | id 19 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 8 | basfn 13057 | . . . . . 6 ⊢ Base Fn V | |
| 9 | elex 2791 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ V) | |
| 10 | funfvex 5620 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 11 | 10 | funfni 5399 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ Grp → (Base‘𝐺) ∈ V) |
| 13 | 12 | pwexd 4244 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝒫 (Base‘𝐺) ∈ V) |
| 14 | rabexg 4206 | . . . 4 ⊢ (𝒫 (Base‘𝐺) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp} ∈ V) | |
| 15 | 13, 14 | syl 14 | . . 3 ⊢ (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp} ∈ V) |
| 16 | 1, 6, 7, 15 | fvmptd3 5701 | . 2 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp}) |
| 17 | 16, 15 | eqeltrd 2286 | 1 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 {crab 2492 Vcvv 2779 𝒫 cpw 3629 Fn wfn 5289 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 ↾s cress 12999 Grpcgrp 13499 SubGrpcsubg 13670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-ov 5977 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 df-subg 13673 |
| This theorem is referenced by: isnsg 13705 |
| Copyright terms: Public domain | W3C validator |