| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subgex | GIF version | ||
| Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| subgex | ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-subg 13715 | . . 3 ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) | |
| 2 | fveq2 5629 | . . . . 5 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺)) | |
| 3 | 2 | pweqd 3654 | . . . 4 ⊢ (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝐺)) |
| 4 | oveq1 6014 | . . . . 5 ⊢ (𝑤 = 𝐺 → (𝑤 ↾s 𝑠) = (𝐺 ↾s 𝑠)) | |
| 5 | 4 | eleq1d 2298 | . . . 4 ⊢ (𝑤 = 𝐺 → ((𝑤 ↾s 𝑠) ∈ Grp ↔ (𝐺 ↾s 𝑠) ∈ Grp)) |
| 6 | 3, 5 | rabeqbidv 2794 | . . 3 ⊢ (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp}) |
| 7 | id 19 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 8 | basfn 13099 | . . . . . 6 ⊢ Base Fn V | |
| 9 | elex 2811 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ V) | |
| 10 | funfvex 5646 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 11 | 10 | funfni 5423 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ Grp → (Base‘𝐺) ∈ V) |
| 13 | 12 | pwexd 4265 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝒫 (Base‘𝐺) ∈ V) |
| 14 | rabexg 4227 | . . . 4 ⊢ (𝒫 (Base‘𝐺) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp} ∈ V) | |
| 15 | 13, 14 | syl 14 | . . 3 ⊢ (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp} ∈ V) |
| 16 | 1, 6, 7, 15 | fvmptd3 5730 | . 2 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp}) |
| 17 | 16, 15 | eqeltrd 2306 | 1 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {crab 2512 Vcvv 2799 𝒫 cpw 3649 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 ↾s cress 13041 Grpcgrp 13541 SubGrpcsubg 13712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6010 df-inn 9119 df-ndx 13043 df-slot 13044 df-base 13046 df-subg 13715 |
| This theorem is referenced by: isnsg 13747 |
| Copyright terms: Public domain | W3C validator |