ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgex GIF version

Theorem subgex 13246
Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
Assertion
Ref Expression
subgex (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)

Proof of Theorem subgex
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13240 . . 3 SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
2 fveq2 5554 . . . . 5 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
32pweqd 3606 . . . 4 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝐺))
4 oveq1 5925 . . . . 5 (𝑤 = 𝐺 → (𝑤s 𝑠) = (𝐺s 𝑠))
54eleq1d 2262 . . . 4 (𝑤 = 𝐺 → ((𝑤s 𝑠) ∈ Grp ↔ (𝐺s 𝑠) ∈ Grp))
63, 5rabeqbidv 2755 . . 3 (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp})
7 id 19 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
8 basfn 12676 . . . . . 6 Base Fn V
9 elex 2771 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ V)
10 funfvex 5571 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5354 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . . . 5 (𝐺 ∈ Grp → (Base‘𝐺) ∈ V)
1312pwexd 4210 . . . 4 (𝐺 ∈ Grp → 𝒫 (Base‘𝐺) ∈ V)
14 rabexg 4172 . . . 4 (𝒫 (Base‘𝐺) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
1513, 14syl 14 . . 3 (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
161, 6, 7, 15fvmptd3 5651 . 2 (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp})
1716, 15eqeltrd 2270 1 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  {crab 2476  Vcvv 2760  𝒫 cpw 3601   Fn wfn 5249  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  Grpcgrp 13072  SubGrpcsubg 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-subg 13240
This theorem is referenced by:  isnsg  13272
  Copyright terms: Public domain W3C validator