![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subgex | GIF version |
Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.) |
Ref | Expression |
---|---|
subgex | ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-subg 13035 | . . 3 ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) | |
2 | fveq2 5517 | . . . . 5 ⊢ (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺)) | |
3 | 2 | pweqd 3582 | . . . 4 ⊢ (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝐺)) |
4 | oveq1 5884 | . . . . 5 ⊢ (𝑤 = 𝐺 → (𝑤 ↾s 𝑠) = (𝐺 ↾s 𝑠)) | |
5 | 4 | eleq1d 2246 | . . . 4 ⊢ (𝑤 = 𝐺 → ((𝑤 ↾s 𝑠) ∈ Grp ↔ (𝐺 ↾s 𝑠) ∈ Grp)) |
6 | 3, 5 | rabeqbidv 2734 | . . 3 ⊢ (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp}) |
7 | id 19 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
8 | basfn 12522 | . . . . . 6 ⊢ Base Fn V | |
9 | elex 2750 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ V) | |
10 | funfvex 5534 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
11 | 10 | funfni 5318 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
12 | 8, 9, 11 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ Grp → (Base‘𝐺) ∈ V) |
13 | 12 | pwexd 4183 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝒫 (Base‘𝐺) ∈ V) |
14 | rabexg 4148 | . . . 4 ⊢ (𝒫 (Base‘𝐺) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp} ∈ V) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp} ∈ V) |
16 | 1, 6, 7, 15 | fvmptd3 5611 | . 2 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺 ↾s 𝑠) ∈ Grp}) |
17 | 16, 15 | eqeltrd 2254 | 1 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 {crab 2459 Vcvv 2739 𝒫 cpw 3577 Fn wfn 5213 ‘cfv 5218 (class class class)co 5877 Basecbs 12464 ↾s cress 12465 Grpcgrp 12882 SubGrpcsubg 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5880 df-inn 8922 df-ndx 12467 df-slot 12468 df-base 12470 df-subg 13035 |
This theorem is referenced by: isnsg 13067 |
Copyright terms: Public domain | W3C validator |