ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgex GIF version

Theorem subgex 12967
Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
Assertion
Ref Expression
subgex (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)

Proof of Theorem subgex
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 12961 . . 3 SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
2 fveq2 5514 . . . . 5 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
32pweqd 3580 . . . 4 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝐺))
4 oveq1 5879 . . . . 5 (𝑤 = 𝐺 → (𝑤s 𝑠) = (𝐺s 𝑠))
54eleq1d 2246 . . . 4 (𝑤 = 𝐺 → ((𝑤s 𝑠) ∈ Grp ↔ (𝐺s 𝑠) ∈ Grp))
63, 5rabeqbidv 2732 . . 3 (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp})
7 id 19 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
8 basfn 12512 . . . . . 6 Base Fn V
9 elex 2748 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ V)
10 funfvex 5531 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5315 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . . . 5 (𝐺 ∈ Grp → (Base‘𝐺) ∈ V)
1312pwexd 4180 . . . 4 (𝐺 ∈ Grp → 𝒫 (Base‘𝐺) ∈ V)
14 rabexg 4145 . . . 4 (𝒫 (Base‘𝐺) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
1513, 14syl 14 . . 3 (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
161, 6, 7, 15fvmptd3 5608 . 2 (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp})
1716, 15eqeltrd 2254 1 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  {crab 2459  Vcvv 2737  𝒫 cpw 3575   Fn wfn 5210  cfv 5215  (class class class)co 5872  Basecbs 12454  s cress 12455  Grpcgrp 12809  SubGrpcsubg 12958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-cnex 7899  ax-resscn 7900  ax-1re 7902  ax-addrcl 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223  df-ov 5875  df-inn 8916  df-ndx 12457  df-slot 12458  df-base 12460  df-subg 12961
This theorem is referenced by:  isnsg  12993
  Copyright terms: Public domain W3C validator