ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgex GIF version

Theorem subgex 13249
Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
Assertion
Ref Expression
subgex (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)

Proof of Theorem subgex
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13243 . . 3 SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
2 fveq2 5555 . . . . 5 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
32pweqd 3607 . . . 4 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝐺))
4 oveq1 5926 . . . . 5 (𝑤 = 𝐺 → (𝑤s 𝑠) = (𝐺s 𝑠))
54eleq1d 2262 . . . 4 (𝑤 = 𝐺 → ((𝑤s 𝑠) ∈ Grp ↔ (𝐺s 𝑠) ∈ Grp))
63, 5rabeqbidv 2755 . . 3 (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp})
7 id 19 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
8 basfn 12679 . . . . . 6 Base Fn V
9 elex 2771 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ V)
10 funfvex 5572 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5355 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . . . 5 (𝐺 ∈ Grp → (Base‘𝐺) ∈ V)
1312pwexd 4211 . . . 4 (𝐺 ∈ Grp → 𝒫 (Base‘𝐺) ∈ V)
14 rabexg 4173 . . . 4 (𝒫 (Base‘𝐺) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
1513, 14syl 14 . . 3 (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
161, 6, 7, 15fvmptd3 5652 . 2 (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp})
1716, 15eqeltrd 2270 1 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  {crab 2476  Vcvv 2760  𝒫 cpw 3602   Fn wfn 5250  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  Grpcgrp 13075  SubGrpcsubg 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-subg 13243
This theorem is referenced by:  isnsg  13275
  Copyright terms: Public domain W3C validator