ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgex GIF version

Theorem subgex 13556
Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
Assertion
Ref Expression
subgex (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)

Proof of Theorem subgex
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13550 . . 3 SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
2 fveq2 5583 . . . . 5 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
32pweqd 3622 . . . 4 (𝑤 = 𝐺 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝐺))
4 oveq1 5958 . . . . 5 (𝑤 = 𝐺 → (𝑤s 𝑠) = (𝐺s 𝑠))
54eleq1d 2275 . . . 4 (𝑤 = 𝐺 → ((𝑤s 𝑠) ∈ Grp ↔ (𝐺s 𝑠) ∈ Grp))
63, 5rabeqbidv 2768 . . 3 (𝑤 = 𝐺 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp} = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp})
7 id 19 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
8 basfn 12934 . . . . . 6 Base Fn V
9 elex 2784 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ V)
10 funfvex 5600 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5381 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . . . 5 (𝐺 ∈ Grp → (Base‘𝐺) ∈ V)
1312pwexd 4229 . . . 4 (𝐺 ∈ Grp → 𝒫 (Base‘𝐺) ∈ V)
14 rabexg 4191 . . . 4 (𝒫 (Base‘𝐺) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
1513, 14syl 14 . . 3 (𝐺 ∈ Grp → {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp} ∈ V)
161, 6, 7, 15fvmptd3 5680 . 2 (𝐺 ∈ Grp → (SubGrp‘𝐺) = {𝑠 ∈ 𝒫 (Base‘𝐺) ∣ (𝐺s 𝑠) ∈ Grp})
1716, 15eqeltrd 2283 1 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  𝒫 cpw 3617   Fn wfn 5271  cfv 5276  (class class class)co 5951  Basecbs 12876  s cress 12877  Grpcgrp 13376  SubGrpcsubg 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-ov 5954  df-inn 9044  df-ndx 12879  df-slot 12880  df-base 12882  df-subg 13550
This theorem is referenced by:  isnsg  13582
  Copyright terms: Public domain W3C validator