| Step | Hyp | Ref
| Expression |
| 1 | | issubg2.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
| 2 | 1 | subgss 13304 |
. . 3
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| 3 | | eqid 2196 |
. . . . . . 7
⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) |
| 4 | 3 | subggrp 13307 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 5 | | eqid 2196 |
. . . . . . 7
⊢
(Base‘(𝐺
↾s 𝑆)) =
(Base‘(𝐺
↾s 𝑆)) |
| 6 | | eqid 2196 |
. . . . . . 7
⊢
(0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) |
| 7 | 5, 6 | grpidcl 13161 |
. . . . . 6
⊢ ((𝐺 ↾s 𝑆) ∈ Grp →
(0g‘(𝐺
↾s 𝑆))
∈ (Base‘(𝐺
↾s 𝑆))) |
| 8 | 4, 7 | syl 14 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘(𝐺
↾s 𝑆))
∈ (Base‘(𝐺
↾s 𝑆))) |
| 9 | 3 | subgbas 13308 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 10 | 8, 9 | eleqtrrd 2276 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘(𝐺
↾s 𝑆))
∈ 𝑆) |
| 11 | | elex2 2779 |
. . . 4
⊢
((0g‘(𝐺 ↾s 𝑆)) ∈ 𝑆 → ∃𝑢 𝑢 ∈ 𝑆) |
| 12 | 10, 11 | syl 14 |
. . 3
⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∃𝑢 𝑢 ∈ 𝑆) |
| 13 | | issubg2.p |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
| 14 | 13 | subgcl 13314 |
. . . . . . 7
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
| 15 | 14 | 3expa 1205 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
| 16 | 15 | ralrimiva 2570 |
. . . . 5
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) |
| 17 | | issubg2.i |
. . . . . 6
⊢ 𝐼 = (invg‘𝐺) |
| 18 | 17 | subginvcl 13313 |
. . . . 5
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) |
| 19 | 16, 18 | jca 306 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆) → (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)) |
| 20 | 19 | ralrimiva 2570 |
. . 3
⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)) |
| 21 | 2, 12, 20 | 3jca 1179 |
. 2
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑆 ⊆ 𝐵 ∧ ∃𝑢 𝑢 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) |
| 22 | | eleq1w 2257 |
. . . . 5
⊢ (𝑟 = 𝑢 → (𝑟 ∈ 𝑆 ↔ 𝑢 ∈ 𝑆)) |
| 23 | 22 | cbvexv 1933 |
. . . 4
⊢
(∃𝑟 𝑟 ∈ 𝑆 ↔ ∃𝑢 𝑢 ∈ 𝑆) |
| 24 | 23 | 3anbi2i 1193 |
. . 3
⊢ ((𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑢 𝑢 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) |
| 25 | | simpl 109 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → 𝐺 ∈ Grp) |
| 26 | | simpr1 1005 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → 𝑆 ⊆ 𝐵) |
| 27 | 3 | a1i 9 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆)) |
| 28 | 1 | a1i 9 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐵 = (Base‘𝐺)) |
| 29 | | simpl 109 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐺 ∈ Grp) |
| 30 | | simpr 110 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ 𝐵) |
| 31 | 27, 28, 29, 30 | ressbas2d 12746 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 32 | 31 | 3ad2antr1 1164 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 33 | 13 | a1i 9 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → + =
(+g‘𝐺)) |
| 34 | | basfn 12736 |
. . . . . . . . . . 11
⊢ Base Fn
V |
| 35 | 29 | elexd 2776 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐺 ∈ V) |
| 36 | | funfvex 5575 |
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ 𝐺 ∈ dom
Base) → (Base‘𝐺)
∈ V) |
| 37 | 36 | funfni 5358 |
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ 𝐺 ∈ V) →
(Base‘𝐺) ∈
V) |
| 38 | 34, 35, 37 | sylancr 414 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (Base‘𝐺) ∈ V) |
| 39 | 1, 38 | eqeltrid 2283 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝐵 ∈ V) |
| 40 | 39, 30 | ssexd 4173 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ V) |
| 41 | 27, 33, 40, 29 | ressplusgd 12806 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → + =
(+g‘(𝐺
↾s 𝑆))) |
| 42 | 41 | 3ad2antr1 1164 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → + =
(+g‘(𝐺
↾s 𝑆))) |
| 43 | | simpr3 1007 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)) |
| 44 | | simpl 109 |
. . . . . . . . . 10
⊢
((∀𝑦 ∈
𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) |
| 45 | 44 | ralimi 2560 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) |
| 46 | 43, 45 | syl 14 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) |
| 47 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦)) |
| 48 | 47 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑦) ∈ 𝑆)) |
| 49 | | oveq2 5930 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣)) |
| 50 | 49 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → ((𝑢 + 𝑦) ∈ 𝑆 ↔ (𝑢 + 𝑣) ∈ 𝑆)) |
| 51 | 48, 50 | rspc2v 2881 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 → (𝑢 + 𝑣) ∈ 𝑆)) |
| 52 | 46, 51 | syl5com 29 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (𝑢 + 𝑣) ∈ 𝑆)) |
| 53 | 52 | 3impib 1203 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (𝑢 + 𝑣) ∈ 𝑆) |
| 54 | 26 | sseld 3182 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → (𝑢 ∈ 𝑆 → 𝑢 ∈ 𝐵)) |
| 55 | 26 | sseld 3182 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → (𝑣 ∈ 𝑆 → 𝑣 ∈ 𝐵)) |
| 56 | 26 | sseld 3182 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → (𝑤 ∈ 𝑆 → 𝑤 ∈ 𝐵)) |
| 57 | 54, 55, 56 | 3anim123d 1330 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) |
| 58 | 57 | imp 124 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) |
| 59 | 1, 13 | grpass 13141 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
| 60 | 59 | adantlr 477 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
| 61 | 58, 60 | syldan 282 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
| 62 | | simpr2 1006 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → ∃𝑟 𝑟 ∈ 𝑆) |
| 63 | 62, 23 | sylib 122 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → ∃𝑢 𝑢 ∈ 𝑆) |
| 64 | 26 | sselda 3183 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝑆) → 𝑢 ∈ 𝐵) |
| 65 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 66 | 1, 13, 65, 17 | grplinv 13182 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵) → ((𝐼‘𝑢) + 𝑢) = (0g‘𝐺)) |
| 67 | 66 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝐵) → ((𝐼‘𝑢) + 𝑢) = (0g‘𝐺)) |
| 68 | 64, 67 | syldan 282 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝑆) → ((𝐼‘𝑢) + 𝑢) = (0g‘𝐺)) |
| 69 | | simpr 110 |
. . . . . . . . . . . 12
⊢
((∀𝑦 ∈
𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) |
| 70 | 69 | ralimi 2560 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
| 71 | 43, 70 | syl 14 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
| 72 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝐼‘𝑥) = (𝐼‘𝑢)) |
| 73 | 72 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → ((𝐼‘𝑥) ∈ 𝑆 ↔ (𝐼‘𝑢) ∈ 𝑆)) |
| 74 | 73 | rspccva 2867 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝑆 (𝐼‘𝑥) ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) → (𝐼‘𝑢) ∈ 𝑆) |
| 75 | 71, 74 | sylan 283 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝑆) → (𝐼‘𝑢) ∈ 𝑆) |
| 76 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝑆) → 𝑢 ∈ 𝑆) |
| 77 | 46 | adantr 276 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝑆) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) |
| 78 | | ovrspc2v 5948 |
. . . . . . . . 9
⊢ ((((𝐼‘𝑢) ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝐼‘𝑢) + 𝑢) ∈ 𝑆) |
| 79 | 75, 76, 77, 78 | syl21anc 1248 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝑆) → ((𝐼‘𝑢) + 𝑢) ∈ 𝑆) |
| 80 | 68, 79 | eqeltrrd 2274 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝑆) → (0g‘𝐺) ∈ 𝑆) |
| 81 | 63, 80 | exlimddv 1913 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → (0g‘𝐺) ∈ 𝑆) |
| 82 | 1, 13, 65 | grplid 13163 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵) → ((0g‘𝐺) + 𝑢) = 𝑢) |
| 83 | 82 | adantlr 477 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝐵) → ((0g‘𝐺) + 𝑢) = 𝑢) |
| 84 | 64, 83 | syldan 282 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) ∧ 𝑢 ∈ 𝑆) → ((0g‘𝐺) + 𝑢) = 𝑢) |
| 85 | 32, 42, 53, 61, 81, 84, 75, 68 | isgrpd 13155 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 86 | 1 | issubg 13303 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 87 | 25, 26, 85, 86 | syl3anbrc 1183 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 88 | 87 | ex 115 |
. . 3
⊢ (𝐺 ∈ Grp → ((𝑆 ⊆ 𝐵 ∧ ∃𝑟 𝑟 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))) |
| 89 | 24, 88 | biimtrrid 153 |
. 2
⊢ (𝐺 ∈ Grp → ((𝑆 ⊆ 𝐵 ∧ ∃𝑢 𝑢 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))) |
| 90 | 21, 89 | impbid2 143 |
1
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑢 𝑢 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)))) |