![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subginvcl | GIF version |
Description: The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subginvcl.i | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
subginvcl | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2188 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
2 | 1 | subggrp 13081 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
3 | simpr 110 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
4 | 1 | subgbas 13082 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
5 | 4 | adantr 276 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
6 | 3, 5 | eleqtrd 2267 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘(𝐺 ↾s 𝑆))) |
7 | eqid 2188 | . . . 4 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
8 | eqid 2188 | . . . 4 ⊢ (invg‘(𝐺 ↾s 𝑆)) = (invg‘(𝐺 ↾s 𝑆)) | |
9 | 7, 8 | grpinvcl 12957 | . . 3 ⊢ (((𝐺 ↾s 𝑆) ∈ Grp ∧ 𝑋 ∈ (Base‘(𝐺 ↾s 𝑆))) → ((invg‘(𝐺 ↾s 𝑆))‘𝑋) ∈ (Base‘(𝐺 ↾s 𝑆))) |
10 | 2, 6, 9 | syl2an2r 595 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → ((invg‘(𝐺 ↾s 𝑆))‘𝑋) ∈ (Base‘(𝐺 ↾s 𝑆))) |
11 | subginvcl.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
12 | 1, 11, 8 | subginv 13085 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = ((invg‘(𝐺 ↾s 𝑆))‘𝑋)) |
13 | 10, 12, 5 | 3eltr4d 2272 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2159 ‘cfv 5230 (class class class)co 5890 Basecbs 12479 ↾s cress 12480 Grpcgrp 12910 invgcminusg 12911 SubGrpcsubg 13071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-1cn 7921 ax-1re 7922 ax-icn 7923 ax-addcl 7924 ax-addrcl 7925 ax-mulcl 7926 ax-addcom 7928 ax-addass 7930 ax-i2m1 7933 ax-0lt1 7934 ax-0id 7936 ax-rnegex 7937 ax-pre-ltirr 7940 ax-pre-ltadd 7944 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-reu 2474 df-rmo 2475 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-riota 5846 df-ov 5893 df-oprab 5894 df-mpo 5895 df-pnf 8011 df-mnf 8012 df-ltxr 8014 df-inn 8937 df-2 8995 df-ndx 12482 df-slot 12483 df-base 12485 df-sets 12486 df-iress 12487 df-plusg 12567 df-0g 12728 df-mgm 12797 df-sgrp 12830 df-mnd 12843 df-grp 12913 df-minusg 12914 df-subg 13074 |
This theorem is referenced by: subgsubcl 13089 subgmulgcl 13091 issubg2m 13093 subgintm 13102 ssnmz 13115 eqger 13128 ghmpreima 13165 |
Copyright terms: Public domain | W3C validator |