ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subginvcl GIF version

Theorem subginvcl 13686
Description: The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subginvcl.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
subginvcl ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem subginvcl
StepHypRef Expression
1 eqid 2209 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
21subggrp 13680 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
3 simpr 110 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝑋𝑆)
41subgbas 13681 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
54adantr 276 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝑆 = (Base‘(𝐺s 𝑆)))
63, 5eleqtrd 2288 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘(𝐺s 𝑆)))
7 eqid 2209 . . . 4 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
8 eqid 2209 . . . 4 (invg‘(𝐺s 𝑆)) = (invg‘(𝐺s 𝑆))
97, 8grpinvcl 13547 . . 3 (((𝐺s 𝑆) ∈ Grp ∧ 𝑋 ∈ (Base‘(𝐺s 𝑆))) → ((invg‘(𝐺s 𝑆))‘𝑋) ∈ (Base‘(𝐺s 𝑆)))
102, 6, 9syl2an2r 597 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → ((invg‘(𝐺s 𝑆))‘𝑋) ∈ (Base‘(𝐺s 𝑆)))
11 subginvcl.i . . 3 𝐼 = (invg𝐺)
121, 11, 8subginv 13684 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) = ((invg‘(𝐺s 𝑆))‘𝑋))
1310, 12, 53eltr4d 2293 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  Basecbs 12998  s cress 12999  Grpcgrp 13499  invgcminusg 13500  SubGrpcsubg 13670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-subg 13673
This theorem is referenced by:  subgsubcl  13688  subgmulgcl  13690  issubg2m  13692  subgintm  13701  ssnmz  13714  eqger  13727  ghmpreima  13769
  Copyright terms: Public domain W3C validator