Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-tr | GIF version |
Description: Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4089 (which is suggestive of the word "transitive"), dftr3 4091, dftr4 4092, and dftr5 4090. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wtr 4087 | . 2 wff Tr 𝐴 |
3 | 1 | cuni 3796 | . . 3 class ∪ 𝐴 |
4 | 3, 1 | wss 3121 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
5 | 2, 4 | wb 104 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dftr2 4089 dftr4 4092 treq 4093 trv 4099 pwtr 4204 unisuc 4398 unisucg 4399 orduniss 4410 |
Copyright terms: Public domain | W3C validator |