Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-tr | GIF version |
Description: Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4082 (which is suggestive of the word "transitive"), dftr3 4084, dftr4 4085, and dftr5 4083. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wtr 4080 | . 2 wff Tr 𝐴 |
3 | 1 | cuni 3789 | . . 3 class ∪ 𝐴 |
4 | 3, 1 | wss 3116 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
5 | 2, 4 | wb 104 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dftr2 4082 dftr4 4085 treq 4086 trv 4092 pwtr 4197 unisuc 4391 unisucg 4392 orduniss 4403 |
Copyright terms: Public domain | W3C validator |