Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-tr | GIF version |
Description: Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4098 (which is suggestive of the word "transitive"), dftr3 4100, dftr4 4101, and dftr5 4099. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wtr 4096 | . 2 wff Tr 𝐴 |
3 | 1 | cuni 3805 | . . 3 class ∪ 𝐴 |
4 | 3, 1 | wss 3127 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
5 | 2, 4 | wb 105 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dftr2 4098 dftr4 4101 treq 4102 trv 4108 pwtr 4213 unisuc 4407 unisucg 4408 orduniss 4419 |
Copyright terms: Public domain | W3C validator |