| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-tr | GIF version | ||
| Description: Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4183 (which is suggestive of the word "transitive"), dftr3 4185, dftr4 4186, and dftr5 4184. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wtr 4181 | . 2 wff Tr 𝐴 |
| 3 | 1 | cuni 3887 | . . 3 class ∪ 𝐴 |
| 4 | 3, 1 | wss 3197 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
| 5 | 2, 4 | wb 105 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
| Colors of variables: wff set class |
| This definition is referenced by: dftr2 4183 dftr4 4186 treq 4187 trv 4193 pwtr 4304 unisuc 4503 unisucg 4504 orduniss 4515 |
| Copyright terms: Public domain | W3C validator |