![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-tr | GIF version |
Description: Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4129 (which is suggestive of the word "transitive"), dftr3 4131, dftr4 4132, and dftr5 4130. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wtr 4127 | . 2 wff Tr 𝐴 |
3 | 1 | cuni 3835 | . . 3 class ∪ 𝐴 |
4 | 3, 1 | wss 3153 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
5 | 2, 4 | wb 105 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dftr2 4129 dftr4 4132 treq 4133 trv 4139 pwtr 4248 unisuc 4444 unisucg 4445 orduniss 4456 |
Copyright terms: Public domain | W3C validator |