![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-tr | GIF version |
Description: Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 3986 (which is suggestive of the word "transitive"), dftr3 3988, dftr4 3989, and dftr5 3987. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wtr 3984 | . 2 wff Tr 𝐴 |
3 | 1 | cuni 3700 | . . 3 class ∪ 𝐴 |
4 | 3, 1 | wss 3035 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
5 | 2, 4 | wb 104 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dftr2 3986 dftr4 3989 treq 3990 trv 3996 pwtr 4099 unisuc 4293 unisucg 4294 orduniss 4305 |
Copyright terms: Public domain | W3C validator |