![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-tr | GIF version |
Description: Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4105 (which is suggestive of the word "transitive"), dftr3 4107, dftr4 4108, and dftr5 4106. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wtr 4103 | . 2 wff Tr 𝐴 |
3 | 1 | cuni 3811 | . . 3 class ∪ 𝐴 |
4 | 3, 1 | wss 3131 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
5 | 2, 4 | wb 105 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dftr2 4105 dftr4 4108 treq 4109 trv 4115 pwtr 4221 unisuc 4415 unisucg 4416 orduniss 4427 |
Copyright terms: Public domain | W3C validator |