| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trv | GIF version | ||
| Description: The universe is transitive. (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| trv | ⊢ Tr V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3223 | . 2 ⊢ ∪ V ⊆ V | |
| 2 | df-tr 4159 | . 2 ⊢ (Tr V ↔ ∪ V ⊆ V) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ Tr V |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2776 ⊆ wss 3174 ∪ cuni 3864 Tr wtr 4158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 df-in 3180 df-ss 3187 df-tr 4159 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |