Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > trv | GIF version |
Description: The universe is transitive. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
trv | ⊢ Tr V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3146 | . 2 ⊢ ∪ V ⊆ V | |
2 | df-tr 4059 | . 2 ⊢ (Tr V ↔ ∪ V ⊆ V) | |
3 | 1, 2 | mpbir 145 | 1 ⊢ Tr V |
Colors of variables: wff set class |
Syntax hints: Vcvv 2709 ⊆ wss 3098 ∪ cuni 3768 Tr wtr 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-v 2711 df-in 3104 df-ss 3111 df-tr 4059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |