![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > trv | GIF version |
Description: The universe is transitive. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
trv | ⊢ Tr V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3201 | . 2 ⊢ ∪ V ⊆ V | |
2 | df-tr 4128 | . 2 ⊢ (Tr V ↔ ∪ V ⊆ V) | |
3 | 1, 2 | mpbir 146 | 1 ⊢ Tr V |
Colors of variables: wff set class |
Syntax hints: Vcvv 2760 ⊆ wss 3153 ∪ cuni 3835 Tr wtr 4127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 df-in 3159 df-ss 3166 df-tr 4128 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |