| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwtr | GIF version | ||
| Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| pwtr | ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipw 4302 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 2 | 1 | sseq1i 3250 | . 2 ⊢ (∪ 𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| 3 | df-tr 4182 | . 2 ⊢ (Tr 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝒫 𝐴) | |
| 4 | dftr4 4186 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
| 5 | 2, 3, 4 | 3bitr4ri 213 | 1 ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3887 Tr wtr 4181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-uni 3888 df-tr 4182 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |