ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwtr GIF version

Theorem pwtr 4262
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
pwtr (Tr 𝐴 ↔ Tr 𝒫 𝐴)

Proof of Theorem pwtr
StepHypRef Expression
1 unipw 4260 . . 3 𝒫 𝐴 = 𝐴
21sseq1i 3218 . 2 ( 𝒫 𝐴 ⊆ 𝒫 𝐴𝐴 ⊆ 𝒫 𝐴)
3 df-tr 4142 . 2 (Tr 𝒫 𝐴 𝒫 𝐴 ⊆ 𝒫 𝐴)
4 dftr4 4146 . 2 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
52, 3, 43bitr4ri 213 1 (Tr 𝐴 ↔ Tr 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wss 3165  𝒫 cpw 3615   cuni 3849  Tr wtr 4141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-uni 3850  df-tr 4142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator