| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwtr | GIF version | ||
| Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| pwtr | ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipw 4260 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 2 | 1 | sseq1i 3218 | . 2 ⊢ (∪ 𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| 3 | df-tr 4142 | . 2 ⊢ (Tr 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝒫 𝐴) | |
| 4 | dftr4 4146 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
| 5 | 2, 3, 4 | 3bitr4ri 213 | 1 ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊆ wss 3165 𝒫 cpw 3615 ∪ cuni 3849 Tr wtr 4141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-uni 3850 df-tr 4142 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |