Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwtr | GIF version |
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
pwtr | ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 4172 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
2 | 1 | sseq1i 3150 | . 2 ⊢ (∪ 𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
3 | df-tr 4059 | . 2 ⊢ (Tr 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝒫 𝐴) | |
4 | dftr4 4063 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
5 | 2, 3, 4 | 3bitr4ri 212 | 1 ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ⊆ wss 3098 𝒫 cpw 3539 ∪ cuni 3768 Tr wtr 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-uni 3769 df-tr 4059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |