![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwtr | GIF version |
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
pwtr | ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 4246 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
2 | 1 | sseq1i 3205 | . 2 ⊢ (∪ 𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
3 | df-tr 4128 | . 2 ⊢ (Tr 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝒫 𝐴) | |
4 | dftr4 4132 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
5 | 2, 3, 4 | 3bitr4ri 213 | 1 ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ⊆ wss 3153 𝒫 cpw 3601 ∪ cuni 3835 Tr wtr 4127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-uni 3836 df-tr 4128 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |