ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwtr GIF version

Theorem pwtr 4037
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
pwtr (Tr 𝐴 ↔ Tr 𝒫 𝐴)

Proof of Theorem pwtr
StepHypRef Expression
1 unipw 4035 . . 3 𝒫 𝐴 = 𝐴
21sseq1i 3048 . 2 ( 𝒫 𝐴 ⊆ 𝒫 𝐴𝐴 ⊆ 𝒫 𝐴)
3 df-tr 3929 . 2 (Tr 𝒫 𝐴 𝒫 𝐴 ⊆ 𝒫 𝐴)
4 dftr4 3933 . 2 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
52, 3, 43bitr4ri 211 1 (Tr 𝐴 ↔ Tr 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 103  wss 2997  𝒫 cpw 3425   cuni 3648  Tr wtr 3928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-uni 3649  df-tr 3929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator