ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwtr GIF version

Theorem pwtr 4197
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
pwtr (Tr 𝐴 ↔ Tr 𝒫 𝐴)

Proof of Theorem pwtr
StepHypRef Expression
1 unipw 4195 . . 3 𝒫 𝐴 = 𝐴
21sseq1i 3168 . 2 ( 𝒫 𝐴 ⊆ 𝒫 𝐴𝐴 ⊆ 𝒫 𝐴)
3 df-tr 4081 . 2 (Tr 𝒫 𝐴 𝒫 𝐴 ⊆ 𝒫 𝐴)
4 dftr4 4085 . 2 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
52, 3, 43bitr4ri 212 1 (Tr 𝐴 ↔ Tr 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wss 3116  𝒫 cpw 3559   cuni 3789  Tr wtr 4080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-uni 3790  df-tr 4081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator