| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dftr4 | GIF version | ||
| Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| dftr4 | ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr 4183 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 2 | sspwuni 4050 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 1, 2 | bitr4i 187 | 1 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3888 Tr wtr 4182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3889 df-tr 4183 |
| This theorem is referenced by: tr0 4193 pwtr 4305 pw1on 7419 |
| Copyright terms: Public domain | W3C validator |