| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dftr4 | GIF version | ||
| Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| dftr4 | ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr 4162 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 2 | sspwuni 4029 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 1, 2 | bitr4i 187 | 1 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊆ wss 3177 𝒫 cpw 3629 ∪ cuni 3867 Tr wtr 4161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-v 2781 df-in 3183 df-ss 3190 df-pw 3631 df-uni 3868 df-tr 4162 |
| This theorem is referenced by: tr0 4172 pwtr 4284 pw1on 7379 |
| Copyright terms: Public domain | W3C validator |