ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr4 GIF version

Theorem dftr4 4187
Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 4183 . 2 (Tr 𝐴 𝐴𝐴)
2 sspwuni 4050 . 2 (𝐴 ⊆ 𝒫 𝐴 𝐴𝐴)
31, 2bitr4i 187 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wss 3197  𝒫 cpw 3649   cuni 3888  Tr wtr 4182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3889  df-tr 4183
This theorem is referenced by:  tr0  4193  pwtr  4305  pw1on  7419
  Copyright terms: Public domain W3C validator