ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr4 GIF version

Theorem dftr4 4151
Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 4147 . 2 (Tr 𝐴 𝐴𝐴)
2 sspwuni 4014 . 2 (𝐴 ⊆ 𝒫 𝐴 𝐴𝐴)
31, 2bitr4i 187 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wss 3167  𝒫 cpw 3617   cuni 3852  Tr wtr 4146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-in 3173  df-ss 3180  df-pw 3619  df-uni 3853  df-tr 4147
This theorem is referenced by:  tr0  4157  pwtr  4267  pw1on  7345
  Copyright terms: Public domain W3C validator