| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dftr4 | GIF version | ||
| Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| dftr4 | ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr 4147 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 2 | sspwuni 4014 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 1, 2 | bitr4i 187 | 1 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊆ wss 3167 𝒫 cpw 3617 ∪ cuni 3852 Tr wtr 4146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3173 df-ss 3180 df-pw 3619 df-uni 3853 df-tr 4147 |
| This theorem is referenced by: tr0 4157 pwtr 4267 pw1on 7345 |
| Copyright terms: Public domain | W3C validator |