ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr4 GIF version

Theorem dftr4 4166
Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 4162 . 2 (Tr 𝐴 𝐴𝐴)
2 sspwuni 4029 . 2 (𝐴 ⊆ 𝒫 𝐴 𝐴𝐴)
31, 2bitr4i 187 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wss 3177  𝒫 cpw 3629   cuni 3867  Tr wtr 4161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-v 2781  df-in 3183  df-ss 3190  df-pw 3631  df-uni 3868  df-tr 4162
This theorem is referenced by:  tr0  4172  pwtr  4284  pw1on  7379
  Copyright terms: Public domain W3C validator