ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr3 GIF version

Theorem dftr3 4186
Description: An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr3 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem dftr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dftr5 4185 . 2 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
2 dfss3 3213 . . 3 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
32ralbii 2536 . 2 (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
41, 3bitr4i 187 1 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  wral 2508  wss 3197  Tr wtr 4182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-uni 3889  df-tr 4183
This theorem is referenced by:  trss  4191  trin  4192  triun  4195  trint  4197  tron  4473  ssorduni  4579  pw1on  7419  bj-nntrans2  16339  bj-omtrans2  16344
  Copyright terms: Public domain W3C validator