ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr3 GIF version

Theorem dftr3 4132
Description: An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr3 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem dftr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dftr5 4131 . 2 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
2 dfss3 3170 . . 3 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
32ralbii 2500 . 2 (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
41, 3bitr4i 187 1 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2164  wral 2472  wss 3154  Tr wtr 4128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3160  df-ss 3167  df-uni 3837  df-tr 4129
This theorem is referenced by:  trss  4137  trin  4138  triun  4141  trint  4143  tron  4414  ssorduni  4520  pw1on  7288  bj-nntrans2  15514  bj-omtrans2  15519
  Copyright terms: Public domain W3C validator