| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dftr3 | GIF version | ||
| Description: An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| dftr3 | ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr5 4149 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | |
| 2 | dfss3 3183 | . . 3 ⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | |
| 3 | 2 | ralbii 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3167 Tr wtr 4146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3173 df-ss 3180 df-uni 3853 df-tr 4147 |
| This theorem is referenced by: trss 4155 trin 4156 triun 4159 trint 4161 tron 4433 ssorduni 4539 pw1on 7345 bj-nntrans2 15962 bj-omtrans2 15967 |
| Copyright terms: Public domain | W3C validator |