ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg GIF version

Theorem unisucg 4459
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))

Proof of Theorem unisucg
StepHypRef Expression
1 df-tr 4142 . . 3 (Tr 𝐴 𝐴𝐴)
2 ssequn1 3342 . . 3 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
31, 2bitri 184 . 2 (Tr 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
4 df-suc 4416 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
54unieqi 3859 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
6 uniun 3868 . . . . 5 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
75, 6eqtri 2225 . . . 4 suc 𝐴 = ( 𝐴 {𝐴})
8 unisng 3866 . . . . 5 (𝐴𝑉 {𝐴} = 𝐴)
98uneq2d 3326 . . . 4 (𝐴𝑉 → ( 𝐴 {𝐴}) = ( 𝐴𝐴))
107, 9eqtrid 2249 . . 3 (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))
1110eqeq1d 2213 . 2 (𝐴𝑉 → ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴))
123, 11bitr4id 199 1 (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wcel 2175  cun 3163  wss 3165  {csn 3632   cuni 3849  Tr wtr 4141  suc csuc 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-uni 3850  df-tr 4142  df-suc 4416
This theorem is referenced by:  onsucuni2  4610  nlimsucg  4612  ctmlemr  7192  nnnninfeq2  7213  nnsf  15806  peano4nninf  15807  nnnninfex  15823
  Copyright terms: Public domain W3C validator