ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg GIF version

Theorem unisucg 4504
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))

Proof of Theorem unisucg
StepHypRef Expression
1 df-tr 4182 . . 3 (Tr 𝐴 𝐴𝐴)
2 ssequn1 3374 . . 3 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
31, 2bitri 184 . 2 (Tr 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
4 df-suc 4461 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
54unieqi 3897 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
6 uniun 3906 . . . . 5 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
75, 6eqtri 2250 . . . 4 suc 𝐴 = ( 𝐴 {𝐴})
8 unisng 3904 . . . . 5 (𝐴𝑉 {𝐴} = 𝐴)
98uneq2d 3358 . . . 4 (𝐴𝑉 → ( 𝐴 {𝐴}) = ( 𝐴𝐴))
107, 9eqtrid 2274 . . 3 (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))
1110eqeq1d 2238 . 2 (𝐴𝑉 → ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴))
123, 11bitr4id 199 1 (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  cun 3195  wss 3197  {csn 3666   cuni 3887  Tr wtr 4181  suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-suc 4461
This theorem is referenced by:  onsucuni2  4655  nlimsucg  4657  ctmlemr  7271  nnnninfeq2  7292  nnsf  16330  peano4nninf  16331  nnnninfex  16347
  Copyright terms: Public domain W3C validator