![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unisucg | GIF version |
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
Ref | Expression |
---|---|
unisucg | ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tr 4128 | . . 3 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
2 | ssequn1 3329 | . . 3 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
3 | 1, 2 | bitri 184 | . 2 ⊢ (Tr 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) |
4 | df-suc 4402 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | 4 | unieqi 3845 | . . . . 5 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
6 | uniun 3854 | . . . . 5 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
7 | 5, 6 | eqtri 2214 | . . . 4 ⊢ ∪ suc 𝐴 = (∪ 𝐴 ∪ ∪ {𝐴}) |
8 | unisng 3852 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
9 | 8 | uneq2d 3313 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴)) |
10 | 7, 9 | eqtrid 2238 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
11 | 10 | eqeq1d 2202 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴)) |
12 | 3, 11 | bitr4id 199 | 1 ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 ⊆ wss 3153 {csn 3618 ∪ cuni 3835 Tr wtr 4127 suc csuc 4396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-suc 4402 |
This theorem is referenced by: onsucuni2 4596 nlimsucg 4598 ctmlemr 7167 nnnninfeq2 7188 nnsf 15495 peano4nninf 15496 |
Copyright terms: Public domain | W3C validator |