ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg GIF version

Theorem unisucg 4392
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))

Proof of Theorem unisucg
StepHypRef Expression
1 df-tr 4081 . . 3 (Tr 𝐴 𝐴𝐴)
2 ssequn1 3292 . . 3 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
31, 2bitri 183 . 2 (Tr 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
4 df-suc 4349 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
54unieqi 3799 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
6 uniun 3808 . . . . 5 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
75, 6eqtri 2186 . . . 4 suc 𝐴 = ( 𝐴 {𝐴})
8 unisng 3806 . . . . 5 (𝐴𝑉 {𝐴} = 𝐴)
98uneq2d 3276 . . . 4 (𝐴𝑉 → ( 𝐴 {𝐴}) = ( 𝐴𝐴))
107, 9syl5eq 2211 . . 3 (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))
1110eqeq1d 2174 . 2 (𝐴𝑉 → ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴))
123, 11bitr4id 198 1 (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wcel 2136  cun 3114  wss 3116  {csn 3576   cuni 3789  Tr wtr 4080  suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-suc 4349
This theorem is referenced by:  onsucuni2  4541  nlimsucg  4543  ctmlemr  7073  nnnninfeq2  7093  nnsf  13885  peano4nninf  13886
  Copyright terms: Public domain W3C validator