ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg GIF version

Theorem unisucg 4386
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))

Proof of Theorem unisucg
StepHypRef Expression
1 df-tr 4075 . . 3 (Tr 𝐴 𝐴𝐴)
2 ssequn1 3287 . . 3 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
31, 2bitri 183 . 2 (Tr 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
4 df-suc 4343 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
54unieqi 3793 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
6 uniun 3802 . . . . 5 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
75, 6eqtri 2185 . . . 4 suc 𝐴 = ( 𝐴 {𝐴})
8 unisng 3800 . . . . 5 (𝐴𝑉 {𝐴} = 𝐴)
98uneq2d 3271 . . . 4 (𝐴𝑉 → ( 𝐴 {𝐴}) = ( 𝐴𝐴))
107, 9syl5eq 2209 . . 3 (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))
1110eqeq1d 2173 . 2 (𝐴𝑉 → ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴))
123, 11bitr4id 198 1 (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1342  wcel 2135  cun 3109  wss 3111  {csn 3570   cuni 3783  Tr wtr 4074  suc csuc 4337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-rex 2448  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-sn 3576  df-pr 3577  df-uni 3784  df-tr 4075  df-suc 4343
This theorem is referenced by:  onsucuni2  4535  nlimsucg  4537  ctmlemr  7064  nnnninfeq2  7084  nnsf  13719  peano4nninf  13720
  Copyright terms: Public domain W3C validator