| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisucg | GIF version | ||
| Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| unisucg | ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr 4142 | . . 3 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 2 | ssequn1 3342 | . . 3 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
| 3 | 1, 2 | bitri 184 | . 2 ⊢ (Tr 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) |
| 4 | df-suc 4416 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | 4 | unieqi 3859 | . . . . 5 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
| 6 | uniun 3868 | . . . . 5 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
| 7 | 5, 6 | eqtri 2225 | . . . 4 ⊢ ∪ suc 𝐴 = (∪ 𝐴 ∪ ∪ {𝐴}) |
| 8 | unisng 3866 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
| 9 | 8 | uneq2d 3326 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴)) |
| 10 | 7, 9 | eqtrid 2249 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
| 11 | 10 | eqeq1d 2213 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴)) |
| 12 | 3, 11 | bitr4id 199 | 1 ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∪ cun 3163 ⊆ wss 3165 {csn 3632 ∪ cuni 3849 Tr wtr 4141 suc csuc 4410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-suc 4416 |
| This theorem is referenced by: onsucuni2 4610 nlimsucg 4612 ctmlemr 7192 nnnninfeq2 7213 nnsf 15806 peano4nninf 15807 nnnninfex 15823 |
| Copyright terms: Public domain | W3C validator |