ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisucg GIF version

Theorem unisucg 4449
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.)
Assertion
Ref Expression
unisucg (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))

Proof of Theorem unisucg
StepHypRef Expression
1 df-tr 4132 . . 3 (Tr 𝐴 𝐴𝐴)
2 ssequn1 3333 . . 3 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
31, 2bitri 184 . 2 (Tr 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
4 df-suc 4406 . . . . . 6 suc 𝐴 = (𝐴 ∪ {𝐴})
54unieqi 3849 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
6 uniun 3858 . . . . 5 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
75, 6eqtri 2217 . . . 4 suc 𝐴 = ( 𝐴 {𝐴})
8 unisng 3856 . . . . 5 (𝐴𝑉 {𝐴} = 𝐴)
98uneq2d 3317 . . . 4 (𝐴𝑉 → ( 𝐴 {𝐴}) = ( 𝐴𝐴))
107, 9eqtrid 2241 . . 3 (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))
1110eqeq1d 2205 . 2 (𝐴𝑉 → ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴))
123, 11bitr4id 199 1 (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  cun 3155  wss 3157  {csn 3622   cuni 3839  Tr wtr 4131  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-suc 4406
This theorem is referenced by:  onsucuni2  4600  nlimsucg  4602  ctmlemr  7174  nnnninfeq2  7195  nnsf  15649  peano4nninf  15650
  Copyright terms: Public domain W3C validator