Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisucg | GIF version |
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by Jim Kingdon, 18-Aug-2019.) |
Ref | Expression |
---|---|
unisucg | ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tr 4088 | . . 3 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
2 | ssequn1 3297 | . . 3 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
3 | 1, 2 | bitri 183 | . 2 ⊢ (Tr 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) |
4 | df-suc 4356 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | 4 | unieqi 3806 | . . . . 5 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
6 | uniun 3815 | . . . . 5 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
7 | 5, 6 | eqtri 2191 | . . . 4 ⊢ ∪ suc 𝐴 = (∪ 𝐴 ∪ ∪ {𝐴}) |
8 | unisng 3813 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
9 | 8 | uneq2d 3281 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴)) |
10 | 7, 9 | eqtrid 2215 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) |
11 | 10 | eqeq1d 2179 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴)) |
12 | 3, 11 | bitr4id 198 | 1 ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 ⊆ wss 3121 {csn 3583 ∪ cuni 3796 Tr wtr 4087 suc csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-suc 4356 |
This theorem is referenced by: onsucuni2 4548 nlimsucg 4550 ctmlemr 7085 nnnninfeq2 7105 nnsf 14038 peano4nninf 14039 |
Copyright terms: Public domain | W3C validator |