| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisuc | GIF version | ||
| Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisuc.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisuc | ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 3333 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
| 2 | df-tr 4132 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | df-suc 4406 | . . . . 5 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 4 | 3 | unieqi 3849 | . . . 4 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
| 5 | uniun 3858 | . . . 4 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
| 6 | unisuc.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 7 | 6 | unisn 3855 | . . . . 5 ⊢ ∪ {𝐴} = 𝐴 |
| 8 | 7 | uneq2i 3314 | . . . 4 ⊢ (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴) |
| 9 | 4, 5, 8 | 3eqtri 2221 | . . 3 ⊢ ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴) |
| 10 | 9 | eqeq1i 2204 | . 2 ⊢ (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) |
| 11 | 1, 2, 10 | 3bitr4i 212 | 1 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ⊆ wss 3157 {csn 3622 ∪ cuni 3839 Tr wtr 4131 suc csuc 4400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-suc 4406 |
| This theorem is referenced by: onunisuci 4467 ordsucunielexmid 4567 tfrexlem 6392 nnsucuniel 6553 |
| Copyright terms: Public domain | W3C validator |