![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unisuc | GIF version |
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisuc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisuc | ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 3330 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
2 | df-tr 4129 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
3 | df-suc 4403 | . . . . 5 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
4 | 3 | unieqi 3846 | . . . 4 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
5 | uniun 3855 | . . . 4 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
6 | unisuc.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
7 | 6 | unisn 3852 | . . . . 5 ⊢ ∪ {𝐴} = 𝐴 |
8 | 7 | uneq2i 3311 | . . . 4 ⊢ (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴) |
9 | 4, 5, 8 | 3eqtri 2218 | . . 3 ⊢ ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴) |
10 | 9 | eqeq1i 2201 | . 2 ⊢ (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) |
11 | 1, 2, 10 | 3bitr4i 212 | 1 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∪ cun 3152 ⊆ wss 3154 {csn 3619 ∪ cuni 3836 Tr wtr 4128 suc csuc 4397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-uni 3837 df-tr 4129 df-suc 4403 |
This theorem is referenced by: onunisuci 4464 ordsucunielexmid 4564 tfrexlem 6389 nnsucuniel 6550 |
Copyright terms: Public domain | W3C validator |