ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisuc GIF version

Theorem unisuc 4343
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1 𝐴 ∈ V
Assertion
Ref Expression
unisuc (Tr 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 3251 . 2 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
2 df-tr 4035 . 2 (Tr 𝐴 𝐴𝐴)
3 df-suc 4301 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
43unieqi 3754 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5 uniun 3763 . . . 4 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
6 unisuc.1 . . . . . 6 𝐴 ∈ V
76unisn 3760 . . . . 5 {𝐴} = 𝐴
87uneq2i 3232 . . . 4 ( 𝐴 {𝐴}) = ( 𝐴𝐴)
94, 5, 83eqtri 2165 . . 3 suc 𝐴 = ( 𝐴𝐴)
109eqeq1i 2148 . 2 ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
111, 2, 103bitr4i 211 1 (Tr 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1332  wcel 1481  Vcvv 2689  cun 3074  wss 3076  {csn 3532   cuni 3744  Tr wtr 4034  suc csuc 4295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-sn 3538  df-pr 3539  df-uni 3745  df-tr 4035  df-suc 4301
This theorem is referenced by:  onunisuci  4362  ordsucunielexmid  4454  tfrexlem  6239  nnsucuniel  6399
  Copyright terms: Public domain W3C validator