| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisuc | GIF version | ||
| Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisuc.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisuc | ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 3347 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
| 2 | df-tr 4151 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | df-suc 4426 | . . . . 5 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 4 | 3 | unieqi 3866 | . . . 4 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
| 5 | uniun 3875 | . . . 4 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
| 6 | unisuc.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 7 | 6 | unisn 3872 | . . . . 5 ⊢ ∪ {𝐴} = 𝐴 |
| 8 | 7 | uneq2i 3328 | . . . 4 ⊢ (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴) |
| 9 | 4, 5, 8 | 3eqtri 2231 | . . 3 ⊢ ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴) |
| 10 | 9 | eqeq1i 2214 | . 2 ⊢ (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) |
| 11 | 1, 2, 10 | 3bitr4i 212 | 1 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∪ cun 3168 ⊆ wss 3170 {csn 3638 ∪ cuni 3856 Tr wtr 4150 suc csuc 4420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-uni 3857 df-tr 4151 df-suc 4426 |
| This theorem is referenced by: onunisuci 4487 ordsucunielexmid 4587 tfrexlem 6433 nnsucuniel 6594 |
| Copyright terms: Public domain | W3C validator |