ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisuc GIF version

Theorem unisuc 4330
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1 𝐴 ∈ V
Assertion
Ref Expression
unisuc (Tr 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 3241 . 2 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
2 df-tr 4022 . 2 (Tr 𝐴 𝐴𝐴)
3 df-suc 4288 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
43unieqi 3741 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5 uniun 3750 . . . 4 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
6 unisuc.1 . . . . . 6 𝐴 ∈ V
76unisn 3747 . . . . 5 {𝐴} = 𝐴
87uneq2i 3222 . . . 4 ( 𝐴 {𝐴}) = ( 𝐴𝐴)
94, 5, 83eqtri 2162 . . 3 suc 𝐴 = ( 𝐴𝐴)
109eqeq1i 2145 . 2 ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
111, 2, 103bitr4i 211 1 (Tr 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1331  wcel 1480  Vcvv 2681  cun 3064  wss 3066  {csn 3522   cuni 3731  Tr wtr 4021  suc csuc 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-sn 3528  df-pr 3529  df-uni 3732  df-tr 4022  df-suc 4288
This theorem is referenced by:  onunisuci  4349  ordsucunielexmid  4441  tfrexlem  6224  nnsucuniel  6384
  Copyright terms: Public domain W3C validator