Proof of Theorem dftr5
| Step | Hyp | Ref
| Expression |
| 1 | | dftr2 4133 |
. 2
⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
| 2 | | alcom 1492 |
. . 3
⊢
(∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
| 3 | | impexp 263 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴))) |
| 4 | 3 | albii 1484 |
. . . . . . 7
⊢
(∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴))) |
| 5 | | df-ral 2480 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴))) |
| 6 | 4, 5 | bitr4i 187 |
. . . . . 6
⊢
(∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ∀𝑦 ∈ 𝑥 (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴)) |
| 7 | | r19.21v 2574 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) |
| 8 | 6, 7 | bitri 184 |
. . . . 5
⊢
(∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) |
| 9 | 8 | albii 1484 |
. . . 4
⊢
(∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) |
| 10 | | df-ral 2480 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) |
| 11 | 9, 10 | bitr4i 187 |
. . 3
⊢
(∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) |
| 12 | 2, 11 | bitri 184 |
. 2
⊢
(∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) |
| 13 | 1, 12 | bitri 184 |
1
⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) |