ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr5 GIF version

Theorem dftr5 4134
Description: An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
Assertion
Ref Expression
dftr5 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dftr5
StepHypRef Expression
1 dftr2 4133 . 2 (Tr 𝐴 ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2 alcom 1492 . . 3 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
3 impexp 263 . . . . . . . 8 (((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ (𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
43albii 1484 . . . . . . 7 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑦(𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
5 df-ral 2480 . . . . . . 7 (∀𝑦𝑥 (𝑥𝐴𝑦𝐴) ↔ ∀𝑦(𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
64, 5bitr4i 187 . . . . . 6 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑦𝑥 (𝑥𝐴𝑦𝐴))
7 r19.21v 2574 . . . . . 6 (∀𝑦𝑥 (𝑥𝐴𝑦𝐴) ↔ (𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
86, 7bitri 184 . . . . 5 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ (𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
98albii 1484 . . . 4 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
10 df-ral 2480 . . . 4 (∀𝑥𝐴𝑦𝑥 𝑦𝐴 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
119, 10bitr4i 187 . . 3 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
122, 11bitri 184 . 2 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
131, 12bitri 184 1 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wcel 2167  wral 2475  Tr wtr 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132
This theorem is referenced by:  dftr3  4135  exmidonfinlem  7260
  Copyright terms: Public domain W3C validator