Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > treq | GIF version |
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
treq | ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3798 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
2 | 1 | sseq1d 3171 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐴)) |
3 | sseq2 3166 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) | |
4 | 2, 3 | bitrd 187 | . 2 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) |
5 | df-tr 4081 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
6 | df-tr 4081 | . 2 ⊢ (Tr 𝐵 ↔ ∪ 𝐵 ⊆ 𝐵) | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ⊆ wss 3116 ∪ cuni 3789 Tr wtr 4080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 |
This theorem is referenced by: truni 4094 ordeq 4350 ordsucim 4477 ordom 4584 exmidonfinlem 7149 |
Copyright terms: Public domain | W3C validator |