ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  treq GIF version

Theorem treq 4147
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))

Proof of Theorem treq
StepHypRef Expression
1 unieq 3858 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
21sseq1d 3221 . . 3 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐴))
3 sseq2 3216 . . 3 (𝐴 = 𝐵 → ( 𝐵𝐴 𝐵𝐵))
42, 3bitrd 188 . 2 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐵))
5 df-tr 4142 . 2 (Tr 𝐴 𝐴𝐴)
6 df-tr 4142 . 2 (Tr 𝐵 𝐵𝐵)
74, 5, 63bitr4g 223 1 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wss 3165   cuni 3849  Tr wtr 4141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-in 3171  df-ss 3178  df-uni 3850  df-tr 4142
This theorem is referenced by:  truni  4155  ordeq  4418  ordsucim  4547  ordom  4654  exmidonfinlem  7300
  Copyright terms: Public domain W3C validator