ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  treq GIF version

Theorem treq 4137
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))

Proof of Theorem treq
StepHypRef Expression
1 unieq 3848 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
21sseq1d 3212 . . 3 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐴))
3 sseq2 3207 . . 3 (𝐴 = 𝐵 → ( 𝐵𝐴 𝐵𝐵))
42, 3bitrd 188 . 2 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐵))
5 df-tr 4132 . 2 (Tr 𝐴 𝐴𝐴)
6 df-tr 4132 . 2 (Tr 𝐵 𝐵𝐵)
74, 5, 63bitr4g 223 1 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wss 3157   cuni 3839  Tr wtr 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132
This theorem is referenced by:  truni  4145  ordeq  4407  ordsucim  4536  ordom  4643  exmidonfinlem  7260
  Copyright terms: Public domain W3C validator