ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-uni GIF version

Definition df-uni 3701
Description: Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, { { 1 , 3 } , { 1 , 8 } } = { 1 , 3 , 8 } . This is similar to the union of two classes df-un 3039. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
df-uni 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
Distinct variable group:   𝑥,𝑦,𝐴

Detailed syntax breakdown of Definition df-uni
StepHypRef Expression
1 cA . . 3 class 𝐴
21cuni 3700 . 2 class 𝐴
3 vx . . . . . 6 setvar 𝑥
4 vy . . . . . 6 setvar 𝑦
53, 4wel 1462 . . . . 5 wff 𝑥𝑦
64cv 1311 . . . . . 6 class 𝑦
76, 1wcel 1461 . . . . 5 wff 𝑦𝐴
85, 7wa 103 . . . 4 wff (𝑥𝑦𝑦𝐴)
98, 4wex 1449 . . 3 wff 𝑦(𝑥𝑦𝑦𝐴)
109, 3cab 2099 . 2 class {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
112, 10wceq 1312 1 wff 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
Colors of variables: wff set class
This definition is referenced by:  dfuni2  3702  eluni  3703  csbunig  3708  unipr  3714  uniuni  4330  bdcuni  12757
  Copyright terms: Public domain W3C validator