ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbunig GIF version

Theorem csbunig 3744
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbunig (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)

Proof of Theorem csbunig
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3061 . . 3 (𝐴𝑉𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)})
2 sbcexg 2963 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵)))
3 sbcang 2952 . . . . . . 7 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)))
4 sbcg 2978 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦))
5 sbcel2g 3023 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵))
64, 5anbi12d 464 . . . . . . 7 (𝐴𝑉 → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
73, 6bitrd 187 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
87exbidv 1797 . . . . 5 (𝐴𝑉 → (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
92, 8bitrd 187 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
109abbidv 2257 . . 3 (𝐴𝑉 → {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
111, 10eqtrd 2172 . 2 (𝐴𝑉𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
12 df-uni 3737 . . 3 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
1312csbeq2i 3029 . 2 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
14 df-uni 3737 . 2 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}
1511, 13, 143eqtr4g 2197 1 (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wex 1468  wcel 1480  {cab 2125  [wsbc 2909  csb 3003   cuni 3736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-sbc 2910  df-csb 3004  df-uni 3737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator