ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbunig GIF version

Theorem csbunig 3815
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbunig (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)

Proof of Theorem csbunig
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3118 . . 3 (𝐴𝑉𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)})
2 sbcexg 3017 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵)))
3 sbcang 3006 . . . . . . 7 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)))
4 sbcg 3032 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦))
5 sbcel2g 3078 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵))
64, 5anbi12d 473 . . . . . . 7 (𝐴𝑉 → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
73, 6bitrd 188 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
87exbidv 1825 . . . . 5 (𝐴𝑉 → (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
92, 8bitrd 188 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
109abbidv 2295 . . 3 (𝐴𝑉 → {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
111, 10eqtrd 2210 . 2 (𝐴𝑉𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
12 df-uni 3808 . . 3 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
1312csbeq2i 3084 . 2 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
14 df-uni 3808 . 2 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}
1511, 13, 143eqtr4g 2235 1 (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1492  wcel 2148  {cab 2163  [wsbc 2962  csb 3057   cuni 3807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-sbc 2963  df-csb 3058  df-uni 3808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator