Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfuni2 | GIF version |
Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
dfuni2 | ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-uni 3773 | . 2 ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} | |
2 | exancom 1588 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦)) | |
3 | df-rex 2441 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦)) | |
4 | 2, 3 | bitr4i 186 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
5 | 4 | abbii 2273 | . 2 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
6 | 1, 5 | eqtri 2178 | 1 ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1335 ∃wex 1472 ∈ wcel 2128 {cab 2143 ∃wrex 2436 ∪ cuni 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-rex 2441 df-uni 3773 |
This theorem is referenced by: nfuni 3778 nfunid 3779 unieq 3781 uniiun 3902 |
Copyright terms: Public domain | W3C validator |