ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfuni2 GIF version

Theorem dfuni2 3774
Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfuni2 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfuni2
StepHypRef Expression
1 df-uni 3773 . 2 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
2 exancom 1588 . . . 4 (∃𝑦(𝑥𝑦𝑦𝐴) ↔ ∃𝑦(𝑦𝐴𝑥𝑦))
3 df-rex 2441 . . . 4 (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦(𝑦𝐴𝑥𝑦))
42, 3bitr4i 186 . . 3 (∃𝑦(𝑥𝑦𝑦𝐴) ↔ ∃𝑦𝐴 𝑥𝑦)
54abbii 2273 . 2 {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)} = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
61, 5eqtri 2178 1 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  wex 1472  wcel 2128  {cab 2143  wrex 2436   cuni 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-rex 2441  df-uni 3773
This theorem is referenced by:  nfuni  3778  nfunid  3779  unieq  3781  uniiun  3902
  Copyright terms: Public domain W3C validator