| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfuni2 | GIF version | ||
| Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| dfuni2 | ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-uni 3888 | . 2 ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} | |
| 2 | exancom 1654 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦)) | |
| 3 | df-rex 2514 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦)) | |
| 4 | 2, 3 | bitr4i 187 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
| 5 | 4 | abbii 2345 | . 2 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
| 6 | 1, 5 | eqtri 2250 | 1 ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∃wrex 2509 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-rex 2514 df-uni 3888 |
| This theorem is referenced by: nfuni 3893 nfunid 3894 unieq 3896 uniiun 4018 |
| Copyright terms: Public domain | W3C validator |