ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfuni2 GIF version

Theorem dfuni2 3837
Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfuni2 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfuni2
StepHypRef Expression
1 df-uni 3836 . 2 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
2 exancom 1619 . . . 4 (∃𝑦(𝑥𝑦𝑦𝐴) ↔ ∃𝑦(𝑦𝐴𝑥𝑦))
3 df-rex 2478 . . . 4 (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦(𝑦𝐴𝑥𝑦))
42, 3bitr4i 187 . . 3 (∃𝑦(𝑥𝑦𝑦𝐴) ↔ ∃𝑦𝐴 𝑥𝑦)
54abbii 2309 . 2 {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)} = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
61, 5eqtri 2214 1 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wrex 2473   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-rex 2478  df-uni 3836
This theorem is referenced by:  nfuni  3841  nfunid  3842  unieq  3844  uniiun  3966
  Copyright terms: Public domain W3C validator