![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfuni2 | GIF version |
Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
dfuni2 | ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-uni 3822 | . 2 ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} | |
2 | exancom 1618 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦)) | |
3 | df-rex 2471 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦)) | |
4 | 2, 3 | bitr4i 187 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
5 | 4 | abbii 2303 | . 2 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
6 | 1, 5 | eqtri 2208 | 1 ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1363 ∃wex 1502 ∈ wcel 2158 {cab 2173 ∃wrex 2466 ∪ cuni 3821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-rex 2471 df-uni 3822 |
This theorem is referenced by: nfuni 3827 nfunid 3828 unieq 3830 uniiun 3952 |
Copyright terms: Public domain | W3C validator |