ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfuni2 GIF version

Theorem dfuni2 3798
Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfuni2 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfuni2
StepHypRef Expression
1 df-uni 3797 . 2 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
2 exancom 1601 . . . 4 (∃𝑦(𝑥𝑦𝑦𝐴) ↔ ∃𝑦(𝑦𝐴𝑥𝑦))
3 df-rex 2454 . . . 4 (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦(𝑦𝐴𝑥𝑦))
42, 3bitr4i 186 . . 3 (∃𝑦(𝑥𝑦𝑦𝐴) ↔ ∃𝑦𝐴 𝑥𝑦)
54abbii 2286 . 2 {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)} = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
61, 5eqtri 2191 1 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wex 1485  wcel 2141  {cab 2156  wrex 2449   cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-rex 2454  df-uni 3797
This theorem is referenced by:  nfuni  3802  nfunid  3803  unieq  3805  uniiun  3926
  Copyright terms: Public domain W3C validator