Step | Hyp | Ref
| Expression |
1 | | 19.43 1616 |
. . . 4
⊢
(∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵))) |
2 | | vex 2729 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
3 | 2 | elpr 3597 |
. . . . . . 7
⊢ (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) |
4 | 3 | anbi2i 453 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵))) |
5 | | andi 808 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵))) |
6 | 4, 5 | bitri 183 |
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵}) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵))) |
7 | 6 | exbii 1593 |
. . . 4
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵}) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵))) |
8 | | unipr.1 |
. . . . . . 7
⊢ 𝐴 ∈ V |
9 | 8 | clel3 2861 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦)) |
10 | | exancom 1596 |
. . . . . 6
⊢
(∃𝑦(𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴)) |
11 | 9, 10 | bitri 183 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴)) |
12 | | unipr.2 |
. . . . . . 7
⊢ 𝐵 ∈ V |
13 | 12 | clel3 2861 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦)) |
14 | | exancom 1596 |
. . . . . 6
⊢
(∃𝑦(𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵)) |
15 | 13, 14 | bitri 183 |
. . . . 5
⊢ (𝑥 ∈ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵)) |
16 | 11, 15 | orbi12i 754 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 = 𝐵))) |
17 | 1, 7, 16 | 3bitr4ri 212 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵})) |
18 | 17 | abbii 2282 |
. 2
⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵})} |
19 | | df-un 3120 |
. 2
⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
20 | | df-uni 3790 |
. 2
⊢ ∪ {𝐴,
𝐵} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ {𝐴, 𝐵})} |
21 | 18, 19, 20 | 3eqtr4ri 2197 |
1
⊢ ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵) |