| Step | Hyp | Ref
| Expression |
| 1 | | eluni 3843 |
. . . . . 6
⊢ (𝑢 ∈ ∪ 𝐴
↔ ∃𝑦(𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) |
| 2 | 1 | anbi2i 457 |
. . . . 5
⊢ ((𝑧 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝐴) ↔ (𝑧 ∈ 𝑢 ∧ ∃𝑦(𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 3 | 2 | exbii 1619 |
. . . 4
⊢
(∃𝑢(𝑧 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝐴) ↔ ∃𝑢(𝑧 ∈ 𝑢 ∧ ∃𝑦(𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 4 | | 19.42v 1921 |
. . . . . . 7
⊢
(∃𝑦(𝑧 ∈ 𝑢 ∧ (𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ (𝑧 ∈ 𝑢 ∧ ∃𝑦(𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 5 | 4 | bicomi 132 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑢 ∧ ∃𝑦(𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ ∃𝑦(𝑧 ∈ 𝑢 ∧ (𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 6 | 5 | exbii 1619 |
. . . . 5
⊢
(∃𝑢(𝑧 ∈ 𝑢 ∧ ∃𝑦(𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ ∃𝑢∃𝑦(𝑧 ∈ 𝑢 ∧ (𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 7 | | excom 1678 |
. . . . . 6
⊢
(∃𝑢∃𝑦(𝑧 ∈ 𝑢 ∧ (𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ ∃𝑦∃𝑢(𝑧 ∈ 𝑢 ∧ (𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 8 | | anass 401 |
. . . . . . . 8
⊢ (((𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦) ∧ 𝑦 ∈ 𝐴) ↔ (𝑧 ∈ 𝑢 ∧ (𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 9 | | ancom 266 |
. . . . . . . 8
⊢ (((𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦) ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦))) |
| 10 | 8, 9 | bitr3i 186 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑢 ∧ (𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ (𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦))) |
| 11 | 10 | 2exbii 1620 |
. . . . . 6
⊢
(∃𝑦∃𝑢(𝑧 ∈ 𝑢 ∧ (𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ ∃𝑦∃𝑢(𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦))) |
| 12 | | exdistr 1924 |
. . . . . 6
⊢
(∃𝑦∃𝑢(𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦)) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∃𝑢(𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦))) |
| 13 | 7, 11, 12 | 3bitri 206 |
. . . . 5
⊢
(∃𝑢∃𝑦(𝑧 ∈ 𝑢 ∧ (𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∃𝑢(𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦))) |
| 14 | | eluni 3843 |
. . . . . . . 8
⊢ (𝑧 ∈ ∪ 𝑦
↔ ∃𝑢(𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦)) |
| 15 | 14 | bicomi 132 |
. . . . . . 7
⊢
(∃𝑢(𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦) ↔ 𝑧 ∈ ∪ 𝑦) |
| 16 | 15 | anbi2i 457 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ ∃𝑢(𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦)) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦)) |
| 17 | 16 | exbii 1619 |
. . . . 5
⊢
(∃𝑦(𝑦 ∈ 𝐴 ∧ ∃𝑢(𝑧 ∈ 𝑢 ∧ 𝑢 ∈ 𝑦)) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦)) |
| 18 | 6, 13, 17 | 3bitri 206 |
. . . 4
⊢
(∃𝑢(𝑧 ∈ 𝑢 ∧ ∃𝑦(𝑢 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦)) |
| 19 | | vex 2766 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 20 | 19 | uniex 4473 |
. . . . . . . . . 10
⊢ ∪ 𝑦
∈ V |
| 21 | | eleq2 2260 |
. . . . . . . . . 10
⊢ (𝑣 = ∪
𝑦 → (𝑧 ∈ 𝑣 ↔ 𝑧 ∈ ∪ 𝑦)) |
| 22 | 20, 21 | ceqsexv 2802 |
. . . . . . . . 9
⊢
(∃𝑣(𝑣 = ∪
𝑦 ∧ 𝑧 ∈ 𝑣) ↔ 𝑧 ∈ ∪ 𝑦) |
| 23 | | exancom 1622 |
. . . . . . . . 9
⊢
(∃𝑣(𝑣 = ∪
𝑦 ∧ 𝑧 ∈ 𝑣) ↔ ∃𝑣(𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦)) |
| 24 | 22, 23 | bitr3i 186 |
. . . . . . . 8
⊢ (𝑧 ∈ ∪ 𝑦
↔ ∃𝑣(𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦)) |
| 25 | 24 | anbi2i 457 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦) ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑣(𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦))) |
| 26 | | 19.42v 1921 |
. . . . . . 7
⊢
(∃𝑣(𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦)) ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑣(𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦))) |
| 27 | | ancom 266 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦)) ↔ ((𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦) ∧ 𝑦 ∈ 𝐴)) |
| 28 | | anass 401 |
. . . . . . . . 9
⊢ (((𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦) ∧ 𝑦 ∈ 𝐴) ↔ (𝑧 ∈ 𝑣 ∧ (𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 29 | 27, 28 | bitri 184 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦)) ↔ (𝑧 ∈ 𝑣 ∧ (𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 30 | 29 | exbii 1619 |
. . . . . . 7
⊢
(∃𝑣(𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝑣 ∧ 𝑣 = ∪ 𝑦)) ↔ ∃𝑣(𝑧 ∈ 𝑣 ∧ (𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 31 | 25, 26, 30 | 3bitr2i 208 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦) ↔ ∃𝑣(𝑧 ∈ 𝑣 ∧ (𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 32 | 31 | exbii 1619 |
. . . . 5
⊢
(∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦) ↔ ∃𝑦∃𝑣(𝑧 ∈ 𝑣 ∧ (𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 33 | | excom 1678 |
. . . . 5
⊢
(∃𝑦∃𝑣(𝑧 ∈ 𝑣 ∧ (𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ ∃𝑣∃𝑦(𝑧 ∈ 𝑣 ∧ (𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 34 | | exdistr 1924 |
. . . . . 6
⊢
(∃𝑣∃𝑦(𝑧 ∈ 𝑣 ∧ (𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ ∃𝑣(𝑧 ∈ 𝑣 ∧ ∃𝑦(𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 35 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑣 ∈ V |
| 36 | | eqeq1 2203 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑣 → (𝑥 = ∪ 𝑦 ↔ 𝑣 = ∪ 𝑦)) |
| 37 | 36 | anbi1d 465 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑣 → ((𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ (𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 38 | 37 | exbidv 1839 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦(𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
| 39 | 35, 38 | elab 2908 |
. . . . . . . . 9
⊢ (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)} ↔ ∃𝑦(𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)) |
| 40 | 39 | bicomi 132 |
. . . . . . . 8
⊢
(∃𝑦(𝑣 = ∪
𝑦 ∧ 𝑦 ∈ 𝐴) ↔ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)}) |
| 41 | 40 | anbi2i 457 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑣 ∧ ∃𝑦(𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ (𝑧 ∈ 𝑣 ∧ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)})) |
| 42 | 41 | exbii 1619 |
. . . . . 6
⊢
(∃𝑣(𝑧 ∈ 𝑣 ∧ ∃𝑦(𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ ∃𝑣(𝑧 ∈ 𝑣 ∧ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)})) |
| 43 | 34, 42 | bitri 184 |
. . . . 5
⊢
(∃𝑣∃𝑦(𝑧 ∈ 𝑣 ∧ (𝑣 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)) ↔ ∃𝑣(𝑧 ∈ 𝑣 ∧ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)})) |
| 44 | 32, 33, 43 | 3bitri 206 |
. . . 4
⊢
(∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ∪ 𝑦) ↔ ∃𝑣(𝑧 ∈ 𝑣 ∧ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)})) |
| 45 | 3, 18, 44 | 3bitri 206 |
. . 3
⊢
(∃𝑢(𝑧 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝐴) ↔ ∃𝑣(𝑧 ∈ 𝑣 ∧ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)})) |
| 46 | 45 | abbii 2312 |
. 2
⊢ {𝑧 ∣ ∃𝑢(𝑧 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝐴)} = {𝑧 ∣ ∃𝑣(𝑧 ∈ 𝑣 ∧ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)})} |
| 47 | | df-uni 3841 |
. 2
⊢ ∪ ∪ 𝐴 = {𝑧 ∣ ∃𝑢(𝑧 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝐴)} |
| 48 | | df-uni 3841 |
. 2
⊢ ∪ {𝑥
∣ ∃𝑦(𝑥 = ∪
𝑦 ∧ 𝑦 ∈ 𝐴)} = {𝑧 ∣ ∃𝑣(𝑧 ∈ 𝑣 ∧ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)})} |
| 49 | 46, 47, 48 | 3eqtr4i 2227 |
1
⊢ ∪ ∪ 𝐴 = ∪ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)} |