| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluni | GIF version | ||
| Description: Membership in class union. (Contributed by NM, 22-May-1994.) |
| Ref | Expression |
|---|---|
| eluni | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 → 𝐴 ∈ V) | |
| 2 | elex 2811 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
| 4 | 3 | exlimiv 1644 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
| 5 | eleq1 2292 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 6 | 5 | anbi1d 465 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 7 | 6 | exbidv 1871 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 8 | df-uni 3888 | . . 3 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)} | |
| 9 | 7, 8 | elab2g 2950 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 10 | 1, 4, 9 | pm5.21nii 709 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-uni 3888 |
| This theorem is referenced by: eluni2 3891 elunii 3892 eluniab 3899 uniun 3906 uniin 3907 uniss 3908 unissb 3917 dftr2 4183 unidif0 4250 unipw 4302 uniex2 4524 uniuni 4539 limom 4703 dmuni 4930 fununi 5385 nfvres 5657 elunirn 5883 tfrlem7 6453 tfrexlem 6470 tfrcldm 6499 fiuni 7133 isbasis2g 14704 tgval2 14710 ntreq0 14791 bj-uniex2 16209 |
| Copyright terms: Public domain | W3C validator |