ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluni GIF version

Theorem eluni 3890
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eluni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 2811 . 2 (𝐴 𝐵𝐴 ∈ V)
2 elex 2811 . . . 4 (𝐴𝑥𝐴 ∈ V)
32adantr 276 . . 3 ((𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
43exlimiv 1644 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) → 𝐴 ∈ V)
5 eleq1 2292 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
65anbi1d 465 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝐵) ↔ (𝐴𝑥𝑥𝐵)))
76exbidv 1871 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑥𝑥𝐵) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
8 df-uni 3888 . . 3 𝐵 = {𝑦 ∣ ∃𝑥(𝑦𝑥𝑥𝐵)}
97, 8elab2g 2950 . 2 (𝐴 ∈ V → (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
101, 4, 9pm5.21nii 709 1 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799   cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-uni 3888
This theorem is referenced by:  eluni2  3891  elunii  3892  eluniab  3899  uniun  3906  uniin  3907  uniss  3908  unissb  3917  dftr2  4183  unidif0  4250  unipw  4302  uniex2  4524  uniuni  4539  limom  4703  dmuni  4930  fununi  5385  nfvres  5657  elunirn  5883  tfrlem7  6453  tfrexlem  6470  tfrcldm  6499  fiuni  7133  isbasis2g  14704  tgval2  14710  ntreq0  14791  bj-uniex2  16209
  Copyright terms: Public domain W3C validator