Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluni | GIF version |
Description: Membership in class union. (Contributed by NM, 22-May-1994.) |
Ref | Expression |
---|---|
eluni | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 → 𝐴 ∈ V) | |
2 | elex 2737 | . . . 4 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ V) | |
3 | 2 | adantr 274 | . . 3 ⊢ ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
4 | 3 | exlimiv 1586 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ V) |
5 | eleq1 2229 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
6 | 5 | anbi1d 461 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
7 | 6 | exbidv 1813 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
8 | df-uni 3790 | . . 3 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)} | |
9 | 7, 8 | elab2g 2873 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
10 | 1, 4, 9 | pm5.21nii 694 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 ∪ cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-uni 3790 |
This theorem is referenced by: eluni2 3793 elunii 3794 eluniab 3801 uniun 3808 uniin 3809 uniss 3810 unissb 3819 dftr2 4082 unidif0 4146 unipw 4195 uniex2 4414 uniuni 4429 limom 4591 dmuni 4814 fununi 5256 nfvres 5519 elunirn 5734 tfrlem7 6285 tfrexlem 6302 tfrcldm 6331 fiuni 6943 isbasis2g 12683 tgval2 12691 ntreq0 12772 bj-uniex2 13798 |
Copyright terms: Public domain | W3C validator |