| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-uz | GIF version | ||
| Description: Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 9657 for its value, uzssz 9675 for its relationship to ℤ, nnuz 9691 and nn0uz 9690 for its relationships to ℕ and ℕ0, and eluz1 9659 and eluz2 9661 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| df-uz | ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuz 9655 | . 2 class ℤ≥ | |
| 2 | vj | . . 3 setvar 𝑗 | |
| 3 | cz 9379 | . . 3 class ℤ | |
| 4 | 2 | cv 1372 | . . . . 5 class 𝑗 |
| 5 | vk | . . . . . 6 setvar 𝑘 | |
| 6 | 5 | cv 1372 | . . . . 5 class 𝑘 |
| 7 | cle 8115 | . . . . 5 class ≤ | |
| 8 | 4, 6, 7 | wbr 4047 | . . . 4 wff 𝑗 ≤ 𝑘 |
| 9 | 8, 5, 3 | crab 2489 | . . 3 class {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} |
| 10 | 2, 3, 9 | cmpt 4109 | . 2 class (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| 11 | 1, 10 | wceq 1373 | 1 wff ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| Colors of variables: wff set class |
| This definition is referenced by: uzval 9657 uzf 9658 uzennn 10588 |
| Copyright terms: Public domain | W3C validator |