| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-uz | GIF version | ||
| Description: Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 9692 for its value, uzssz 9710 for its relationship to ℤ, nnuz 9726 and nn0uz 9725 for its relationships to ℕ and ℕ0, and eluz1 9694 and eluz2 9696 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| df-uz | ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuz 9690 | . 2 class ℤ≥ | |
| 2 | vj | . . 3 setvar 𝑗 | |
| 3 | cz 9414 | . . 3 class ℤ | |
| 4 | 2 | cv 1374 | . . . . 5 class 𝑗 |
| 5 | vk | . . . . . 6 setvar 𝑘 | |
| 6 | 5 | cv 1374 | . . . . 5 class 𝑘 |
| 7 | cle 8150 | . . . . 5 class ≤ | |
| 8 | 4, 6, 7 | wbr 4062 | . . . 4 wff 𝑗 ≤ 𝑘 |
| 9 | 8, 5, 3 | crab 2492 | . . 3 class {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} |
| 10 | 2, 3, 9 | cmpt 4124 | . 2 class (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| 11 | 1, 10 | wceq 1375 | 1 wff ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| Colors of variables: wff set class |
| This definition is referenced by: uzval 9692 uzf 9693 uzennn 10625 |
| Copyright terms: Public domain | W3C validator |