| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-uz | GIF version | ||
| Description: Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 9620 for its value, uzssz 9638 for its relationship to ℤ, nnuz 9654 and nn0uz 9653 for its relationships to ℕ and ℕ0, and eluz1 9622 and eluz2 9624 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| df-uz | ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuz 9618 | . 2 class ℤ≥ | |
| 2 | vj | . . 3 setvar 𝑗 | |
| 3 | cz 9343 | . . 3 class ℤ | |
| 4 | 2 | cv 1363 | . . . . 5 class 𝑗 |
| 5 | vk | . . . . . 6 setvar 𝑘 | |
| 6 | 5 | cv 1363 | . . . . 5 class 𝑘 |
| 7 | cle 8079 | . . . . 5 class ≤ | |
| 8 | 4, 6, 7 | wbr 4034 | . . . 4 wff 𝑗 ≤ 𝑘 |
| 9 | 8, 5, 3 | crab 2479 | . . 3 class {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} |
| 10 | 2, 3, 9 | cmpt 4095 | . 2 class (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| 11 | 1, 10 | wceq 1364 | 1 wff ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| Colors of variables: wff set class |
| This definition is referenced by: uzval 9620 uzf 9621 uzennn 10545 |
| Copyright terms: Public domain | W3C validator |