| Step | Hyp | Ref
| Expression |
| 1 | | df-uz 9619 |
. . . . 5
⊢
ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| 2 | | zex 9352 |
. . . . . 6
⊢ ℤ
∈ V |
| 3 | 2 | mptex 5791 |
. . . . 5
⊢ (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) ∈ V |
| 4 | 1, 3 | eqeltri 2269 |
. . . 4
⊢
ℤ≥ ∈ V |
| 5 | | fvexg 5580 |
. . . 4
⊢
((ℤ≥ ∈ V ∧ 𝑀 ∈ ℤ) →
(ℤ≥‘𝑀) ∈ V) |
| 6 | 4, 5 | mpan 424 |
. . 3
⊢ (𝑀 ∈ ℤ →
(ℤ≥‘𝑀) ∈ V) |
| 7 | | nn0ex 9272 |
. . . 4
⊢
ℕ0 ∈ V |
| 8 | 7 | a1i 9 |
. . 3
⊢ (𝑀 ∈ ℤ →
ℕ0 ∈ V) |
| 9 | | eluzelz 9627 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ ℤ) |
| 10 | 9 | adantl 277 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈
(ℤ≥‘𝑀)) → 𝑥 ∈ ℤ) |
| 11 | | simpl 109 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈
(ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
| 12 | 10, 11 | zsubcld 9470 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈
(ℤ≥‘𝑀)) → (𝑥 − 𝑀) ∈ ℤ) |
| 13 | | eluzle 9630 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑥) |
| 14 | 13 | adantl 277 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈
(ℤ≥‘𝑀)) → 𝑀 ≤ 𝑥) |
| 15 | 10 | zred 9465 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈
(ℤ≥‘𝑀)) → 𝑥 ∈ ℝ) |
| 16 | 11 | zred 9465 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈
(ℤ≥‘𝑀)) → 𝑀 ∈ ℝ) |
| 17 | 15, 16 | subge0d 8579 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈
(ℤ≥‘𝑀)) → (0 ≤ (𝑥 − 𝑀) ↔ 𝑀 ≤ 𝑥)) |
| 18 | 14, 17 | mpbird 167 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈
(ℤ≥‘𝑀)) → 0 ≤ (𝑥 − 𝑀)) |
| 19 | | elnn0z 9356 |
. . . . 5
⊢ ((𝑥 − 𝑀) ∈ ℕ0 ↔ ((𝑥 − 𝑀) ∈ ℤ ∧ 0 ≤ (𝑥 − 𝑀))) |
| 20 | 12, 18, 19 | sylanbrc 417 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈
(ℤ≥‘𝑀)) → (𝑥 − 𝑀) ∈
ℕ0) |
| 21 | 20 | ex 115 |
. . 3
⊢ (𝑀 ∈ ℤ → (𝑥 ∈
(ℤ≥‘𝑀) → (𝑥 − 𝑀) ∈
ℕ0)) |
| 22 | | simpl 109 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ 𝑀 ∈
ℤ) |
| 23 | | nn0z 9363 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℤ) |
| 24 | 23 | adantl 277 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℤ) |
| 25 | 24, 22 | zaddcld 9469 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ (𝑦 + 𝑀) ∈
ℤ) |
| 26 | | nn0ge0 9291 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ0
→ 0 ≤ 𝑦) |
| 27 | 26 | adantl 277 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ 0 ≤ 𝑦) |
| 28 | 22 | zred 9465 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ 𝑀 ∈
ℝ) |
| 29 | 24 | zred 9465 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℝ) |
| 30 | 28, 29 | addge02d 8578 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ (0 ≤ 𝑦 ↔
𝑀 ≤ (𝑦 + 𝑀))) |
| 31 | 27, 30 | mpbid 147 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ 𝑀 ≤ (𝑦 + 𝑀)) |
| 32 | | eluz2 9624 |
. . . . 5
⊢ ((𝑦 + 𝑀) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑦 + 𝑀) ∈ ℤ ∧ 𝑀 ≤ (𝑦 + 𝑀))) |
| 33 | 22, 25, 31, 32 | syl3anbrc 1183 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ (𝑦 + 𝑀) ∈
(ℤ≥‘𝑀)) |
| 34 | 33 | ex 115 |
. . 3
⊢ (𝑀 ∈ ℤ → (𝑦 ∈ ℕ0
→ (𝑦 + 𝑀) ∈
(ℤ≥‘𝑀))) |
| 35 | 9 | ad2antrl 490 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ (𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑥 ∈
ℤ) |
| 36 | 35 | zcnd 9466 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ (𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑥 ∈
ℂ) |
| 37 | | simpl 109 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ (𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑀 ∈
ℤ) |
| 38 | 37 | zcnd 9466 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ (𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑀 ∈
ℂ) |
| 39 | | simprr 531 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ (𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑦 ∈
ℕ0) |
| 40 | 39 | nn0cnd 9321 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ (𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑦 ∈
ℂ) |
| 41 | 36, 38, 40 | subadd2d 8373 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ (𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ ℕ0)) → ((𝑥 − 𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥)) |
| 42 | | bicom 140 |
. . . . . 6
⊢ (((𝑥 − 𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥) ↔ ((𝑦 + 𝑀) = 𝑥 ↔ (𝑥 − 𝑀) = 𝑦)) |
| 43 | | eqcom 2198 |
. . . . . . 7
⊢ ((𝑦 + 𝑀) = 𝑥 ↔ 𝑥 = (𝑦 + 𝑀)) |
| 44 | | eqcom 2198 |
. . . . . . 7
⊢ ((𝑥 − 𝑀) = 𝑦 ↔ 𝑦 = (𝑥 − 𝑀)) |
| 45 | 43, 44 | bibi12i 229 |
. . . . . 6
⊢ (((𝑦 + 𝑀) = 𝑥 ↔ (𝑥 − 𝑀) = 𝑦) ↔ (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥 − 𝑀))) |
| 46 | 42, 45 | bitri 184 |
. . . . 5
⊢ (((𝑥 − 𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥) ↔ (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥 − 𝑀))) |
| 47 | 41, 46 | sylib 122 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ (𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ ℕ0)) → (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥 − 𝑀))) |
| 48 | 47 | ex 115 |
. . 3
⊢ (𝑀 ∈ ℤ → ((𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ ℕ0) → (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥 − 𝑀)))) |
| 49 | 6, 8, 21, 34, 48 | en3d 6837 |
. 2
⊢ (𝑀 ∈ ℤ →
(ℤ≥‘𝑀) ≈
ℕ0) |
| 50 | | nn0ennn 10542 |
. 2
⊢
ℕ0 ≈ ℕ |
| 51 | | entr 6852 |
. 2
⊢
(((ℤ≥‘𝑀) ≈ ℕ0 ∧
ℕ0 ≈ ℕ) → (ℤ≥‘𝑀) ≈
ℕ) |
| 52 | 49, 50, 51 | sylancl 413 |
1
⊢ (𝑀 ∈ ℤ →
(ℤ≥‘𝑀) ≈ ℕ) |