ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzennn GIF version

Theorem uzennn 10658
Description: An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
uzennn (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ)

Proof of Theorem uzennn
Dummy variables 𝑥 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uz 9723 . . . . 5 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
2 zex 9455 . . . . . 6 ℤ ∈ V
32mptex 5865 . . . . 5 (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘}) ∈ V
41, 3eqeltri 2302 . . . 4 ∈ V
5 fvexg 5646 . . . 4 ((ℤ ∈ V ∧ 𝑀 ∈ ℤ) → (ℤ𝑀) ∈ V)
64, 5mpan 424 . . 3 (𝑀 ∈ ℤ → (ℤ𝑀) ∈ V)
7 nn0ex 9375 . . . 4 0 ∈ V
87a1i 9 . . 3 (𝑀 ∈ ℤ → ℕ0 ∈ V)
9 eluzelz 9731 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
109adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
11 simpl 109 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
1210, 11zsubcld 9574 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥𝑀) ∈ ℤ)
13 eluzle 9734 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
1413adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
1510zred 9569 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
1611zred 9569 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1715, 16subge0d 8682 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (0 ≤ (𝑥𝑀) ↔ 𝑀𝑥))
1814, 17mpbird 167 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 0 ≤ (𝑥𝑀))
19 elnn0z 9459 . . . . 5 ((𝑥𝑀) ∈ ℕ0 ↔ ((𝑥𝑀) ∈ ℤ ∧ 0 ≤ (𝑥𝑀)))
2012, 18, 19sylanbrc 417 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥𝑀) ∈ ℕ0)
2120ex 115 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) → (𝑥𝑀) ∈ ℕ0))
22 simpl 109 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ∈ ℤ)
23 nn0z 9466 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
2423adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
2524, 22zaddcld 9573 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑦 + 𝑀) ∈ ℤ)
26 nn0ge0 9394 . . . . . . 7 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
2726adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 0 ≤ 𝑦)
2822zred 9569 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ∈ ℝ)
2924zred 9569 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℝ)
3028, 29addge02d 8681 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (0 ≤ 𝑦𝑀 ≤ (𝑦 + 𝑀)))
3127, 30mpbid 147 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ≤ (𝑦 + 𝑀))
32 eluz2 9728 . . . . 5 ((𝑦 + 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑦 + 𝑀) ∈ ℤ ∧ 𝑀 ≤ (𝑦 + 𝑀)))
3322, 25, 31, 32syl3anbrc 1205 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑦 + 𝑀) ∈ (ℤ𝑀))
3433ex 115 . . 3 (𝑀 ∈ ℤ → (𝑦 ∈ ℕ0 → (𝑦 + 𝑀) ∈ (ℤ𝑀)))
359ad2antrl 490 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑥 ∈ ℤ)
3635zcnd 9570 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑥 ∈ ℂ)
37 simpl 109 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑀 ∈ ℤ)
3837zcnd 9570 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑀 ∈ ℂ)
39 simprr 531 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
4039nn0cnd 9424 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑦 ∈ ℂ)
4136, 38, 40subadd2d 8476 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → ((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥))
42 bicom 140 . . . . . 6 (((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥) ↔ ((𝑦 + 𝑀) = 𝑥 ↔ (𝑥𝑀) = 𝑦))
43 eqcom 2231 . . . . . . 7 ((𝑦 + 𝑀) = 𝑥𝑥 = (𝑦 + 𝑀))
44 eqcom 2231 . . . . . . 7 ((𝑥𝑀) = 𝑦𝑦 = (𝑥𝑀))
4543, 44bibi12i 229 . . . . . 6 (((𝑦 + 𝑀) = 𝑥 ↔ (𝑥𝑀) = 𝑦) ↔ (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4642, 45bitri 184 . . . . 5 (((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥) ↔ (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4741, 46sylib 122 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4847ex 115 . . 3 (𝑀 ∈ ℤ → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0) → (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀))))
496, 8, 21, 34, 48en3d 6920 . 2 (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ0)
50 nn0ennn 10655 . 2 0 ≈ ℕ
51 entr 6936 . 2 (((ℤ𝑀) ≈ ℕ0 ∧ ℕ0 ≈ ℕ) → (ℤ𝑀) ≈ ℕ)
5249, 50, 51sylancl 413 1 (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {crab 2512  Vcvv 2799   class class class wbr 4083  cmpt 4145  cfv 5318  (class class class)co 6001  cen 6885  0cc0 7999   + caddc 8002  cle 8182  cmin 8317  cn 9110  0cn0 9369  cz 9446  cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-er 6680  df-en 6888  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by:  xnn0nnen  10659  exmidunben  12997
  Copyright terms: Public domain W3C validator