ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzennn GIF version

Theorem uzennn 10371
Description: An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
uzennn (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ)

Proof of Theorem uzennn
Dummy variables 𝑥 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uz 9467 . . . . 5 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
2 zex 9200 . . . . . 6 ℤ ∈ V
32mptex 5711 . . . . 5 (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘}) ∈ V
41, 3eqeltri 2239 . . . 4 ∈ V
5 fvexg 5505 . . . 4 ((ℤ ∈ V ∧ 𝑀 ∈ ℤ) → (ℤ𝑀) ∈ V)
64, 5mpan 421 . . 3 (𝑀 ∈ ℤ → (ℤ𝑀) ∈ V)
7 nn0ex 9120 . . . 4 0 ∈ V
87a1i 9 . . 3 (𝑀 ∈ ℤ → ℕ0 ∈ V)
9 eluzelz 9475 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
109adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
11 simpl 108 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
1210, 11zsubcld 9318 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥𝑀) ∈ ℤ)
13 eluzle 9478 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
1413adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
1510zred 9313 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
1611zred 9313 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1715, 16subge0d 8433 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (0 ≤ (𝑥𝑀) ↔ 𝑀𝑥))
1814, 17mpbird 166 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 0 ≤ (𝑥𝑀))
19 elnn0z 9204 . . . . 5 ((𝑥𝑀) ∈ ℕ0 ↔ ((𝑥𝑀) ∈ ℤ ∧ 0 ≤ (𝑥𝑀)))
2012, 18, 19sylanbrc 414 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥𝑀) ∈ ℕ0)
2120ex 114 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) → (𝑥𝑀) ∈ ℕ0))
22 simpl 108 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ∈ ℤ)
23 nn0z 9211 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
2423adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
2524, 22zaddcld 9317 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑦 + 𝑀) ∈ ℤ)
26 nn0ge0 9139 . . . . . . 7 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
2726adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 0 ≤ 𝑦)
2822zred 9313 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ∈ ℝ)
2924zred 9313 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℝ)
3028, 29addge02d 8432 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (0 ≤ 𝑦𝑀 ≤ (𝑦 + 𝑀)))
3127, 30mpbid 146 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ≤ (𝑦 + 𝑀))
32 eluz2 9472 . . . . 5 ((𝑦 + 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑦 + 𝑀) ∈ ℤ ∧ 𝑀 ≤ (𝑦 + 𝑀)))
3322, 25, 31, 32syl3anbrc 1171 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑦 + 𝑀) ∈ (ℤ𝑀))
3433ex 114 . . 3 (𝑀 ∈ ℤ → (𝑦 ∈ ℕ0 → (𝑦 + 𝑀) ∈ (ℤ𝑀)))
359ad2antrl 482 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑥 ∈ ℤ)
3635zcnd 9314 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑥 ∈ ℂ)
37 simpl 108 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑀 ∈ ℤ)
3837zcnd 9314 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑀 ∈ ℂ)
39 simprr 522 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
4039nn0cnd 9169 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑦 ∈ ℂ)
4136, 38, 40subadd2d 8228 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → ((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥))
42 bicom 139 . . . . . 6 (((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥) ↔ ((𝑦 + 𝑀) = 𝑥 ↔ (𝑥𝑀) = 𝑦))
43 eqcom 2167 . . . . . . 7 ((𝑦 + 𝑀) = 𝑥𝑥 = (𝑦 + 𝑀))
44 eqcom 2167 . . . . . . 7 ((𝑥𝑀) = 𝑦𝑦 = (𝑥𝑀))
4543, 44bibi12i 228 . . . . . 6 (((𝑦 + 𝑀) = 𝑥 ↔ (𝑥𝑀) = 𝑦) ↔ (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4642, 45bitri 183 . . . . 5 (((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥) ↔ (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4741, 46sylib 121 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4847ex 114 . . 3 (𝑀 ∈ ℤ → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0) → (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀))))
496, 8, 21, 34, 48en3d 6735 . 2 (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ0)
50 nn0ennn 10368 . 2 0 ≈ ℕ
51 entr 6750 . 2 (((ℤ𝑀) ≈ ℕ0 ∧ ℕ0 ≈ ℕ) → (ℤ𝑀) ≈ ℕ)
5249, 50, 51sylancl 410 1 (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {crab 2448  Vcvv 2726   class class class wbr 3982  cmpt 4043  cfv 5188  (class class class)co 5842  cen 6704  0cc0 7753   + caddc 7756  cle 7934  cmin 8069  cn 8857  0cn0 9114  cz 9191  cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-er 6501  df-en 6707  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  exmidunben  12359
  Copyright terms: Public domain W3C validator