ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzennn GIF version

Theorem uzennn 10385
Description: An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
uzennn (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ)

Proof of Theorem uzennn
Dummy variables 𝑥 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uz 9481 . . . . 5 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
2 zex 9214 . . . . . 6 ℤ ∈ V
32mptex 5720 . . . . 5 (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘}) ∈ V
41, 3eqeltri 2243 . . . 4 ∈ V
5 fvexg 5513 . . . 4 ((ℤ ∈ V ∧ 𝑀 ∈ ℤ) → (ℤ𝑀) ∈ V)
64, 5mpan 422 . . 3 (𝑀 ∈ ℤ → (ℤ𝑀) ∈ V)
7 nn0ex 9134 . . . 4 0 ∈ V
87a1i 9 . . 3 (𝑀 ∈ ℤ → ℕ0 ∈ V)
9 eluzelz 9489 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
109adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
11 simpl 108 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
1210, 11zsubcld 9332 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥𝑀) ∈ ℤ)
13 eluzle 9492 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
1413adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
1510zred 9327 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
1611zred 9327 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1715, 16subge0d 8447 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (0 ≤ (𝑥𝑀) ↔ 𝑀𝑥))
1814, 17mpbird 166 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 0 ≤ (𝑥𝑀))
19 elnn0z 9218 . . . . 5 ((𝑥𝑀) ∈ ℕ0 ↔ ((𝑥𝑀) ∈ ℤ ∧ 0 ≤ (𝑥𝑀)))
2012, 18, 19sylanbrc 415 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥𝑀) ∈ ℕ0)
2120ex 114 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) → (𝑥𝑀) ∈ ℕ0))
22 simpl 108 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ∈ ℤ)
23 nn0z 9225 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
2423adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
2524, 22zaddcld 9331 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑦 + 𝑀) ∈ ℤ)
26 nn0ge0 9153 . . . . . . 7 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
2726adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 0 ≤ 𝑦)
2822zred 9327 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ∈ ℝ)
2924zred 9327 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℝ)
3028, 29addge02d 8446 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (0 ≤ 𝑦𝑀 ≤ (𝑦 + 𝑀)))
3127, 30mpbid 146 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ≤ (𝑦 + 𝑀))
32 eluz2 9486 . . . . 5 ((𝑦 + 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑦 + 𝑀) ∈ ℤ ∧ 𝑀 ≤ (𝑦 + 𝑀)))
3322, 25, 31, 32syl3anbrc 1176 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑦 + 𝑀) ∈ (ℤ𝑀))
3433ex 114 . . 3 (𝑀 ∈ ℤ → (𝑦 ∈ ℕ0 → (𝑦 + 𝑀) ∈ (ℤ𝑀)))
359ad2antrl 487 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑥 ∈ ℤ)
3635zcnd 9328 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑥 ∈ ℂ)
37 simpl 108 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑀 ∈ ℤ)
3837zcnd 9328 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑀 ∈ ℂ)
39 simprr 527 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
4039nn0cnd 9183 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑦 ∈ ℂ)
4136, 38, 40subadd2d 8242 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → ((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥))
42 bicom 139 . . . . . 6 (((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥) ↔ ((𝑦 + 𝑀) = 𝑥 ↔ (𝑥𝑀) = 𝑦))
43 eqcom 2172 . . . . . . 7 ((𝑦 + 𝑀) = 𝑥𝑥 = (𝑦 + 𝑀))
44 eqcom 2172 . . . . . . 7 ((𝑥𝑀) = 𝑦𝑦 = (𝑥𝑀))
4543, 44bibi12i 228 . . . . . 6 (((𝑦 + 𝑀) = 𝑥 ↔ (𝑥𝑀) = 𝑦) ↔ (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4642, 45bitri 183 . . . . 5 (((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥) ↔ (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4741, 46sylib 121 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4847ex 114 . . 3 (𝑀 ∈ ℤ → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0) → (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀))))
496, 8, 21, 34, 48en3d 6745 . 2 (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ0)
50 nn0ennn 10382 . 2 0 ≈ ℕ
51 entr 6760 . 2 (((ℤ𝑀) ≈ ℕ0 ∧ ℕ0 ≈ ℕ) → (ℤ𝑀) ≈ ℕ)
5249, 50, 51sylancl 411 1 (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  {crab 2452  Vcvv 2730   class class class wbr 3987  cmpt 4048  cfv 5196  (class class class)co 5851  cen 6714  0cc0 7767   + caddc 7770  cle 7948  cmin 8083  cn 8871  0cn0 9128  cz 9205  cuz 9480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-ltadd 7883
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-er 6511  df-en 6717  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-inn 8872  df-n0 9129  df-z 9206  df-uz 9481
This theorem is referenced by:  exmidunben  12374
  Copyright terms: Public domain W3C validator