ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzennn GIF version

Theorem uzennn 10507
Description: An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
uzennn (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ)

Proof of Theorem uzennn
Dummy variables 𝑥 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uz 9593 . . . . 5 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
2 zex 9326 . . . . . 6 ℤ ∈ V
32mptex 5784 . . . . 5 (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘}) ∈ V
41, 3eqeltri 2266 . . . 4 ∈ V
5 fvexg 5573 . . . 4 ((ℤ ∈ V ∧ 𝑀 ∈ ℤ) → (ℤ𝑀) ∈ V)
64, 5mpan 424 . . 3 (𝑀 ∈ ℤ → (ℤ𝑀) ∈ V)
7 nn0ex 9246 . . . 4 0 ∈ V
87a1i 9 . . 3 (𝑀 ∈ ℤ → ℕ0 ∈ V)
9 eluzelz 9601 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
109adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
11 simpl 109 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
1210, 11zsubcld 9444 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥𝑀) ∈ ℤ)
13 eluzle 9604 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
1413adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
1510zred 9439 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
1611zred 9439 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1715, 16subge0d 8554 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (0 ≤ (𝑥𝑀) ↔ 𝑀𝑥))
1814, 17mpbird 167 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → 0 ≤ (𝑥𝑀))
19 elnn0z 9330 . . . . 5 ((𝑥𝑀) ∈ ℕ0 ↔ ((𝑥𝑀) ∈ ℤ ∧ 0 ≤ (𝑥𝑀)))
2012, 18, 19sylanbrc 417 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥𝑀) ∈ ℕ0)
2120ex 115 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) → (𝑥𝑀) ∈ ℕ0))
22 simpl 109 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ∈ ℤ)
23 nn0z 9337 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
2423adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
2524, 22zaddcld 9443 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑦 + 𝑀) ∈ ℤ)
26 nn0ge0 9265 . . . . . . 7 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
2726adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 0 ≤ 𝑦)
2822zred 9439 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ∈ ℝ)
2924zred 9439 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℝ)
3028, 29addge02d 8553 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (0 ≤ 𝑦𝑀 ≤ (𝑦 + 𝑀)))
3127, 30mpbid 147 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑀 ≤ (𝑦 + 𝑀))
32 eluz2 9598 . . . . 5 ((𝑦 + 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑦 + 𝑀) ∈ ℤ ∧ 𝑀 ≤ (𝑦 + 𝑀)))
3322, 25, 31, 32syl3anbrc 1183 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑦 + 𝑀) ∈ (ℤ𝑀))
3433ex 115 . . 3 (𝑀 ∈ ℤ → (𝑦 ∈ ℕ0 → (𝑦 + 𝑀) ∈ (ℤ𝑀)))
359ad2antrl 490 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑥 ∈ ℤ)
3635zcnd 9440 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑥 ∈ ℂ)
37 simpl 109 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑀 ∈ ℤ)
3837zcnd 9440 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑀 ∈ ℂ)
39 simprr 531 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
4039nn0cnd 9295 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → 𝑦 ∈ ℂ)
4136, 38, 40subadd2d 8349 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → ((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥))
42 bicom 140 . . . . . 6 (((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥) ↔ ((𝑦 + 𝑀) = 𝑥 ↔ (𝑥𝑀) = 𝑦))
43 eqcom 2195 . . . . . . 7 ((𝑦 + 𝑀) = 𝑥𝑥 = (𝑦 + 𝑀))
44 eqcom 2195 . . . . . . 7 ((𝑥𝑀) = 𝑦𝑦 = (𝑥𝑀))
4543, 44bibi12i 229 . . . . . 6 (((𝑦 + 𝑀) = 𝑥 ↔ (𝑥𝑀) = 𝑦) ↔ (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4642, 45bitri 184 . . . . 5 (((𝑥𝑀) = 𝑦 ↔ (𝑦 + 𝑀) = 𝑥) ↔ (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4741, 46sylib 122 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0)) → (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀)))
4847ex 115 . . 3 (𝑀 ∈ ℤ → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ ℕ0) → (𝑥 = (𝑦 + 𝑀) ↔ 𝑦 = (𝑥𝑀))))
496, 8, 21, 34, 48en3d 6823 . 2 (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ0)
50 nn0ennn 10504 . 2 0 ≈ ℕ
51 entr 6838 . 2 (((ℤ𝑀) ≈ ℕ0 ∧ ℕ0 ≈ ℕ) → (ℤ𝑀) ≈ ℕ)
5249, 50, 51sylancl 413 1 (𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {crab 2476  Vcvv 2760   class class class wbr 4029  cmpt 4090  cfv 5254  (class class class)co 5918  cen 6792  0cc0 7872   + caddc 7875  cle 8055  cmin 8190  cn 8982  0cn0 9240  cz 9317  cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-er 6587  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  xnn0nnen  10508  exmidunben  12583
  Copyright terms: Public domain W3C validator