![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluz2 | GIF version |
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluz2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9546 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | simp1 998 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
3 | eluz1 9545 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
4 | ibar 301 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)))) | |
5 | 3, 4 | bitrd 188 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)))) |
6 | 3anass 983 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
7 | 5, 6 | bitr4di 198 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
8 | 1, 2, 7 | pm5.21nii 705 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 979 ∈ wcel 2158 class class class wbr 4015 ‘cfv 5228 ≤ cle 8006 ℤcz 9266 ℤ≥cuz 9541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-cnex 7915 ax-resscn 7916 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-neg 8144 df-z 9267 df-uz 9542 |
This theorem is referenced by: eluzuzle 9549 eluzelz 9550 eluzle 9553 uztrn 9557 eluzp1p1 9566 uznn0sub 9572 uz3m2nn 9586 1eluzge0 9587 2eluzge1 9589 raluz2 9592 rexuz2 9594 peano2uz 9596 nn0pzuz 9600 uzind4 9601 nn0ge2m1nnALT 9631 elfzuzb 10032 uzsubsubfz 10060 ige2m1fz 10123 4fvwrd4 10153 elfzo2 10163 elfzouz2 10174 fzossrbm1 10186 fzossfzop1 10225 ssfzo12bi 10238 elfzonelfzo 10243 elfzomelpfzo 10244 fzosplitprm1 10247 fzostep1 10250 fzind2 10252 flqword2 10302 fldiv4p1lem1div2 10318 uzennn 10449 seq3split 10492 iseqf1olemqk 10507 seq3f1olemqsumkj 10511 seq3f1olemqsumk 10512 seq3f1olemqsum 10513 bcval5 10756 seq3coll 10835 seq3shft 10860 resqrexlemoverl 11043 resqrexlemga 11045 fsum3cvg3 11417 fisumrev2 11467 isumshft 11511 cvgratnnlemseq 11547 cvgratnnlemabsle 11548 cvgratnnlemsumlt 11549 cvgratz 11553 oddge22np1 11899 nn0o 11925 suprzubdc 11966 zsupssdc 11968 uzwodc 12051 dvdsnprmd 12138 prmgt1 12145 oddprmgt2 12147 oddprmge3 12148 prm23ge5 12277 nninfdclemcl 12462 nninfdclemp1 12464 nninfdclemlt 12465 strleund 12576 strleun 12577 cnfldstr 13714 2logb9irr 14660 2logb9irrap 14666 lgsdilem2 14708 |
Copyright terms: Public domain | W3C validator |