Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluz2 | GIF version |
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluz2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9467 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | simp1 987 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
3 | eluz1 9466 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
4 | ibar 299 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)))) | |
5 | 3, 4 | bitrd 187 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)))) |
6 | 3anass 972 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
7 | 5, 6 | bitr4di 197 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
8 | 1, 2, 7 | pm5.21nii 694 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3981 ‘cfv 5187 ≤ cle 7930 ℤcz 9187 ℤ≥cuz 9462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-cnex 7840 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-sbc 2951 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-ov 5844 df-neg 8068 df-z 9188 df-uz 9463 |
This theorem is referenced by: eluzuzle 9470 eluzelz 9471 eluzle 9474 uztrn 9478 eluzp1p1 9487 uznn0sub 9493 uz3m2nn 9507 1eluzge0 9508 2eluzge1 9510 raluz2 9513 rexuz2 9515 peano2uz 9517 nn0pzuz 9521 uzind4 9522 nn0ge2m1nnALT 9552 elfzuzb 9950 uzsubsubfz 9978 ige2m1fz 10041 4fvwrd4 10071 elfzo2 10081 elfzouz2 10092 fzossrbm1 10104 fzossfzop1 10143 ssfzo12bi 10156 elfzonelfzo 10161 elfzomelpfzo 10162 fzosplitprm1 10165 fzostep1 10168 fzind2 10170 flqword2 10220 fldiv4p1lem1div2 10236 uzennn 10367 seq3split 10410 iseqf1olemqk 10425 seq3f1olemqsumkj 10429 seq3f1olemqsumk 10430 seq3f1olemqsum 10431 bcval5 10672 seq3coll 10751 seq3shft 10776 resqrexlemoverl 10959 resqrexlemga 10961 fsum3cvg3 11333 fisumrev2 11383 isumshft 11427 cvgratnnlemseq 11463 cvgratnnlemabsle 11464 cvgratnnlemsumlt 11465 cvgratz 11469 oddge22np1 11814 nn0o 11840 suprzubdc 11881 zsupssdc 11883 uzwodc 11966 dvdsnprmd 12053 prmgt1 12060 oddprmgt2 12062 oddprmge3 12063 prm23ge5 12192 nninfdclemcl 12377 nninfdclemp1 12379 nninfdclemlt 12380 strleund 12478 strleun 12479 2logb9irr 13489 2logb9irrap 13495 lgsdilem2 13537 |
Copyright terms: Public domain | W3C validator |