ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz2 GIF version

Theorem eluz2 9356
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
eluz2 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))

Proof of Theorem eluz2
StepHypRef Expression
1 eluzel2 9355 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 simp1 982 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝑀 ∈ ℤ)
3 eluz1 9354 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
4 ibar 299 . . . 4 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁))))
53, 4bitrd 187 . . 3 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁))))
6 3anass 967 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
75, 6syl6bbr 197 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁)))
81, 2, 7pm5.21nii 694 1 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 963  wcel 1481   class class class wbr 3937  cfv 5131  cle 7825  cz 9078  cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-cnex 7735  ax-resscn 7736
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-neg 7960  df-z 9079  df-uz 9351
This theorem is referenced by:  eluzuzle  9358  eluzelz  9359  eluzle  9362  uztrn  9366  eluzp1p1  9375  uznn0sub  9381  uz3m2nn  9395  1eluzge0  9396  2eluzge1  9398  raluz2  9401  rexuz2  9403  peano2uz  9405  nn0pzuz  9409  uzind4  9410  nn0ge2m1nnALT  9437  elfzuzb  9831  uzsubsubfz  9858  ige2m1fz  9921  4fvwrd4  9948  elfzo2  9958  elfzouz2  9969  fzossrbm1  9981  fzossfzop1  10020  ssfzo12bi  10033  elfzonelfzo  10038  elfzomelpfzo  10039  fzosplitprm1  10042  fzostep1  10045  fzind2  10047  flqword2  10093  fldiv4p1lem1div2  10109  uzennn  10240  seq3split  10283  iseqf1olemqk  10298  seq3f1olemqsumkj  10302  seq3f1olemqsumk  10303  seq3f1olemqsum  10304  bcval5  10541  seq3coll  10617  seq3shft  10642  resqrexlemoverl  10825  resqrexlemga  10827  fsum3cvg3  11197  fisumrev2  11247  isumshft  11291  cvgratnnlemseq  11327  cvgratnnlemabsle  11328  cvgratnnlemsumlt  11329  cvgratz  11333  oddge22np1  11614  nn0o  11640  dvdsnprmd  11842  prmgt1  11848  oddprmgt2  11850  oddprmge3  11851  strleund  12086  strleun  12087  2logb9irr  13096  2logb9irrap  13102
  Copyright terms: Public domain W3C validator