ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz2 GIF version

Theorem eluz2 8919
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
eluz2 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))

Proof of Theorem eluz2
StepHypRef Expression
1 eluzel2 8918 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 simp1 939 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝑀 ∈ ℤ)
3 eluz1 8917 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
4 ibar 295 . . . 4 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁))))
53, 4bitrd 186 . . 3 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁))))
6 3anass 924 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
75, 6syl6bbr 196 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁)))
81, 2, 7pm5.21nii 653 1 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  w3a 920  wcel 1434   class class class wbr 3811  cfv 4968  cle 7425  cz 8645  cuz 8913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-cnex 7338  ax-resscn 7339
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-rn 4411  df-res 4412  df-ima 4413  df-iota 4933  df-fun 4970  df-fn 4971  df-f 4972  df-fv 4976  df-ov 5593  df-neg 7558  df-z 8646  df-uz 8914
This theorem is referenced by:  eluzuzle  8921  eluzelz  8922  eluzle  8925  uztrn  8929  eluzp1p1  8938  uznn0sub  8944  uz3m2nn  8955  1eluzge0  8956  2eluzge1  8958  raluz2  8961  rexuz2  8963  peano2uz  8965  nn0pzuz  8969  uzind4  8970  nn0ge2m1nnALT  8997  elfzuzb  9328  uzsubsubfz  9355  ige2m1fz  9416  4fvwrd4  9440  elfzo2  9450  elfzouz2  9460  fzossrbm1  9472  fzossfzop1  9511  ssfzo12bi  9524  elfzonelfzo  9529  elfzomelpfzo  9530  fzosplitprm1  9533  fzostep1  9536  fzind2  9538  flqword2  9584  fldiv4p1lem1div2  9600  ibcval5  10005  resqrexlemoverl  10280  resqrexlemga  10282  oddge22np1  10660  nn0o  10686  dvdsnprmd  10886  prmgt1  10892  oddprmgt2  10894  oddprmge3  10895
  Copyright terms: Public domain W3C validator