![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluz2 | GIF version |
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluz2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9597 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | simp1 999 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
3 | eluz1 9596 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
4 | ibar 301 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)))) | |
5 | 3, 4 | bitrd 188 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)))) |
6 | 3anass 984 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ↔ (𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
7 | 5, 6 | bitr4di 198 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
8 | 1, 2, 7 | pm5.21nii 705 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 ≤ cle 8055 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-neg 8193 df-z 9318 df-uz 9593 |
This theorem is referenced by: eluzuzle 9600 eluzelz 9601 eluzle 9604 uztrn 9609 eluzp1p1 9618 uznn0sub 9624 uz3m2nn 9638 1eluzge0 9639 2eluzge1 9641 raluz2 9644 rexuz2 9646 peano2uz 9648 nn0pzuz 9652 uzind4 9653 nn0ge2m1nnALT 9683 elfzuzb 10085 uzsubsubfz 10113 ige2m1fz 10176 4fvwrd4 10206 elfzo2 10216 elfzouz2 10228 fzossrbm1 10240 fzossfzop1 10279 ssfzo12bi 10292 elfzonelfzo 10297 elfzomelpfzo 10298 fzosplitprm1 10301 fzostep1 10304 fzind2 10306 flqword2 10358 fldiv4p1lem1div2 10374 uzennn 10507 xnn0nnen 10508 seq3split 10559 iseqf1olemqk 10578 seq3f1olemqsumkj 10582 seq3f1olemqsumk 10583 seq3f1olemqsum 10584 bcval5 10834 seq3coll 10913 seq3shft 10982 resqrexlemoverl 11165 resqrexlemga 11167 fsum3cvg3 11539 fisumrev2 11589 isumshft 11633 cvgratnnlemseq 11669 cvgratnnlemabsle 11670 cvgratnnlemsumlt 11671 cvgratz 11675 oddge22np1 12022 nn0o 12048 suprzubdc 12089 zsupssdc 12091 uzwodc 12174 dvdsnprmd 12263 prmgt1 12270 oddprmgt2 12272 oddprmge3 12273 prm23ge5 12402 nninfdclemcl 12605 nninfdclemp1 12607 nninfdclemlt 12608 strleund 12721 strleun 12722 gsumfzz 13067 gsumfzcl 13071 gsumfzreidx 13407 gsumfzsubmcl 13408 gsumfzmptfidmadd 13409 gsumfzmhm 13413 cnfldstr 14049 gsumfzfsum 14076 znidomb 14146 plyaddlem1 14893 2logb9irr 15103 2logb9irrap 15109 lgsdilem2 15152 gausslemma2dlem2 15178 gausslemma2dlem4 15180 gausslemma2dlem5 15182 gausslemma2dlem6 15183 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |