Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzval | GIF version |
Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzval | ⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3985 | . . 3 ⊢ (𝑗 = 𝑁 → (𝑗 ≤ 𝑘 ↔ 𝑁 ≤ 𝑘)) | |
2 | 1 | rabbidv 2715 | . 2 ⊢ (𝑗 = 𝑁 → {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
3 | df-uz 9467 | . 2 ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | |
4 | zex 9200 | . . 3 ⊢ ℤ ∈ V | |
5 | 4 | rabex 4126 | . 2 ⊢ {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ∈ V |
6 | 2, 3, 5 | fvmpt 5563 | 1 ⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 {crab 2448 class class class wbr 3982 ‘cfv 5188 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-neg 8072 df-z 9192 df-uz 9467 |
This theorem is referenced by: eluz1 9470 nn0uz 9500 nnuz 9501 algfx 11984 |
Copyright terms: Public domain | W3C validator |