ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzval GIF version

Theorem uzval 9620
Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzval (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
Distinct variable group:   𝑘,𝑁

Proof of Theorem uzval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 breq1 4037 . . 3 (𝑗 = 𝑁 → (𝑗𝑘𝑁𝑘))
21rabbidv 2752 . 2 (𝑗 = 𝑁 → {𝑘 ∈ ℤ ∣ 𝑗𝑘} = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
3 df-uz 9619 . 2 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
4 zex 9352 . . 3 ℤ ∈ V
54rabex 4178 . 2 {𝑘 ∈ ℤ ∣ 𝑁𝑘} ∈ V
62, 3, 5fvmpt 5641 1 (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {crab 2479   class class class wbr 4034  cfv 5259  cle 8079  cz 9343  cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-neg 8217  df-z 9344  df-uz 9619
This theorem is referenced by:  eluz1  9622  nn0uz  9653  nnuz  9654  algfx  12245
  Copyright terms: Public domain W3C validator