ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzval GIF version

Theorem uzval 9720
Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzval (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
Distinct variable group:   𝑘,𝑁

Proof of Theorem uzval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 breq1 4085 . . 3 (𝑗 = 𝑁 → (𝑗𝑘𝑁𝑘))
21rabbidv 2788 . 2 (𝑗 = 𝑁 → {𝑘 ∈ ℤ ∣ 𝑗𝑘} = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
3 df-uz 9719 . 2 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
4 zex 9451 . . 3 ℤ ∈ V
54rabex 4227 . 2 {𝑘 ∈ ℤ ∣ 𝑁𝑘} ∈ V
62, 3, 5fvmpt 5710 1 (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {crab 2512   class class class wbr 4082  cfv 5317  cle 8178  cz 9442  cuz 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-neg 8316  df-z 9443  df-uz 9719
This theorem is referenced by:  eluz1  9722  nn0uz  9753  nnuz  9754  algfx  12569
  Copyright terms: Public domain W3C validator