![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnuz | GIF version |
Description: Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
nnuz | ⊢ ℕ = (ℤ≥‘1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnzrab 9341 | . 2 ⊢ ℕ = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘} | |
2 | 1z 9343 | . . 3 ⊢ 1 ∈ ℤ | |
3 | uzval 9594 | . . 3 ⊢ (1 ∈ ℤ → (ℤ≥‘1) = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘}) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘1) = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘} |
5 | 1, 4 | eqtr4i 2217 | 1 ⊢ ℕ = (ℤ≥‘1) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 {crab 2476 class class class wbr 4029 ‘cfv 5254 1c1 7873 ≤ cle 8055 ℕcn 8982 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-z 9318 df-uz 9593 |
This theorem is referenced by: elnnuz 9629 eluz2nn 9631 uznnssnn 9642 eluznn 9665 fzssnn 10134 fseq1p1m1 10160 fz01or 10177 nnsplit 10203 elfzo1 10257 exp3vallem 10611 exp3val 10612 facnn 10798 fac0 10799 bcm1k 10831 bcval5 10834 bcpasc 10837 seq3coll 10913 recvguniq 11139 resqrexlemf 11151 climuni 11436 climrecvg1n 11491 climcvg1nlem 11492 summodclem3 11523 summodclem2a 11524 fsum3 11530 sum0 11531 isumz 11532 fsumcl2lem 11541 fsumadd 11549 fsummulc2 11591 isumnn0nn 11636 divcnv 11640 trireciplem 11643 trirecip 11644 expcnvap0 11645 expcnv 11647 geo2lim 11659 geoisum1 11662 geoisum1c 11663 cvgratnnlemnexp 11667 cvgratnnlemseq 11669 cvgratnnlemrate 11673 cvgratnn 11674 mertenslem2 11679 prodmodclem3 11718 prodmodclem2a 11719 fprodseq 11726 prod0 11728 prod1dc 11729 fprodssdc 11733 fprodmul 11734 ege2le3 11814 nninfdcex 12090 gcdsupex 12094 gcdsupcl 12095 nnmindc 12171 nnminle 12172 lcmval 12201 lcmcllem 12205 lcmledvds 12208 isprm3 12256 phicl2 12352 phibndlem 12354 odzcllem 12380 odzdvds 12383 pcmptcl 12480 pcmpt 12481 pockthlem 12494 pockthg 12495 1arith 12505 4sqlem13m 12541 4sqlem14 12542 4sqlem17 12545 4sqlem18 12546 ennnfonelemjn 12559 ssnnctlemct 12603 nninfdclemf 12606 nninfdclemp1 12607 mulgval 13192 mulgfng 13194 mulgnnp1 13200 mulgnnsubcl 13204 mulgnn0z 13219 mulgnndir 13221 mulgpropdg 13234 lmtopcnp 14418 lgsval 15120 lgscllem 15123 lgsval2lem 15126 lgsval4a 15138 lgsneg 15140 lgsdir 15151 lgsdilem2 15152 lgsdi 15153 lgsne0 15154 gausslemma2dlem3 15179 lgseisenlem4 15189 cvgcmp2nlemabs 15522 cvgcmp2n 15523 trilpolemcl 15527 trilpolemisumle 15528 trilpolemgt1 15529 trilpolemeq1 15530 trilpolemlt1 15531 nconstwlpolem0 15553 nconstwlpolemgt0 15554 |
Copyright terms: Public domain | W3C validator |