Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnuz | GIF version |
Description: Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
nnuz | ⊢ ℕ = (ℤ≥‘1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnzrab 9211 | . 2 ⊢ ℕ = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘} | |
2 | 1z 9213 | . . 3 ⊢ 1 ∈ ℤ | |
3 | uzval 9464 | . . 3 ⊢ (1 ∈ ℤ → (ℤ≥‘1) = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘}) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘1) = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘} |
5 | 1, 4 | eqtr4i 2189 | 1 ⊢ ℕ = (ℤ≥‘1) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 {crab 2447 class class class wbr 3981 ‘cfv 5187 1c1 7750 ≤ cle 7930 ℕcn 8853 ℤcz 9187 ℤ≥cuz 9462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-z 9188 df-uz 9463 |
This theorem is referenced by: elnnuz 9498 eluz2nn 9500 uznnssnn 9511 eluznn 9534 fzssnn 9999 fseq1p1m1 10025 fz01or 10042 nnsplit 10068 elfzo1 10121 exp3vallem 10452 exp3val 10453 facnn 10636 fac0 10637 bcm1k 10669 bcval5 10672 bcpasc 10675 seq3coll 10751 recvguniq 10933 resqrexlemf 10945 climuni 11230 climrecvg1n 11285 climcvg1nlem 11286 summodclem3 11317 summodclem2a 11318 fsum3 11324 sum0 11325 isumz 11326 fsumcl2lem 11335 fsumadd 11343 fsummulc2 11385 isumnn0nn 11430 divcnv 11434 trireciplem 11437 trirecip 11438 expcnvap0 11439 expcnv 11441 geo2lim 11453 geoisum1 11456 geoisum1c 11457 cvgratnnlemnexp 11461 cvgratnnlemseq 11463 cvgratnnlemrate 11467 cvgratnn 11468 mertenslem2 11473 prodmodclem3 11512 prodmodclem2a 11513 fprodseq 11520 prod0 11522 prod1dc 11523 fprodssdc 11527 fprodmul 11528 ege2le3 11608 nninfdcex 11882 gcdsupex 11886 gcdsupcl 11887 nnmindc 11963 nnminle 11964 lcmval 11991 lcmcllem 11995 lcmledvds 11998 isprm3 12046 phicl2 12142 phibndlem 12144 odzcllem 12170 odzdvds 12173 pcmptcl 12268 pcmpt 12269 pockthlem 12282 pockthg 12283 1arith 12293 ennnfonelemjn 12331 ssnnctlemct 12375 nninfdclemf 12378 nninfdclemp1 12379 lmtopcnp 12850 lgsval 13505 lgscllem 13508 lgsval2lem 13511 lgsval4a 13523 lgsneg 13525 lgsdir 13536 lgsdilem2 13537 lgsdi 13538 lgsne0 13539 cvgcmp2nlemabs 13871 cvgcmp2n 13872 trilpolemcl 13876 trilpolemisumle 13877 trilpolemgt1 13878 trilpolemeq1 13879 trilpolemlt1 13880 nconstwlpolem0 13901 nconstwlpolemgt0 13902 |
Copyright terms: Public domain | W3C validator |