| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnuz | GIF version | ||
| Description: Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| nnuz | ⊢ ℕ = (ℤ≥‘1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnzrab 9466 | . 2 ⊢ ℕ = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘} | |
| 2 | 1z 9468 | . . 3 ⊢ 1 ∈ ℤ | |
| 3 | uzval 9720 | . . 3 ⊢ (1 ∈ ℤ → (ℤ≥‘1) = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘}) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘1) = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘} |
| 5 | 1, 4 | eqtr4i 2253 | 1 ⊢ ℕ = (ℤ≥‘1) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 {crab 2512 class class class wbr 4082 ‘cfv 5317 1c1 7996 ≤ cle 8178 ℕcn 9106 ℤcz 9442 ℤ≥cuz 9718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-z 9443 df-uz 9719 |
| This theorem is referenced by: elnnuz 9755 eluz2nn 9757 uznnssnn 9768 eluznn 9791 fzssnn 10260 fseq1p1m1 10286 fz01or 10303 nnsplit 10329 elfzo1 10386 nninfdcex 10452 exp3vallem 10757 exp3val 10758 facnn 10944 fac0 10945 bcm1k 10977 bcval5 10980 bcpasc 10983 seq3coll 11059 recvguniq 11501 resqrexlemf 11513 climuni 11799 climrecvg1n 11854 climcvg1nlem 11855 summodclem3 11886 summodclem2a 11887 fsum3 11893 sum0 11894 isumz 11895 fsumcl2lem 11904 fsumadd 11912 fsummulc2 11954 isumnn0nn 11999 divcnv 12003 trireciplem 12006 trirecip 12007 expcnvap0 12008 expcnv 12010 geo2lim 12022 geoisum1 12025 geoisum1c 12026 cvgratnnlemnexp 12030 cvgratnnlemseq 12032 cvgratnnlemrate 12036 cvgratnn 12037 mertenslem2 12042 prodmodclem3 12081 prodmodclem2a 12082 fprodseq 12089 prod0 12091 prod1dc 12092 fprodssdc 12096 fprodmul 12097 ege2le3 12177 gcdsupex 12473 gcdsupcl 12474 nnmindc 12550 nnminle 12551 lcmval 12580 lcmcllem 12584 lcmledvds 12587 isprm3 12635 phicl2 12731 phibndlem 12733 odzcllem 12760 odzdvds 12763 pcmptcl 12860 pcmpt 12861 pockthlem 12874 pockthg 12875 1arith 12885 4sqlem13m 12921 4sqlem14 12922 4sqlem17 12925 4sqlem18 12926 ennnfonelemjn 12968 ssnnctlemct 13012 nninfdclemf 13015 nninfdclemp1 13016 mulgval 13654 mulgfng 13656 mulgnnp1 13662 mulgnnsubcl 13666 mulgnn0z 13681 mulgnndir 13683 mulgpropdg 13696 lmtopcnp 14918 lgsval 15677 lgscllem 15680 lgsval2lem 15683 lgsval4a 15695 lgsneg 15697 lgsdir 15708 lgsdilem2 15709 lgsdi 15710 lgsne0 15711 gausslemma2dlem3 15736 lgseisenlem4 15746 lgsquadlem2 15751 cvgcmp2nlemabs 16359 cvgcmp2n 16360 trilpolemcl 16364 trilpolemisumle 16365 trilpolemgt1 16366 trilpolemeq1 16367 trilpolemlt1 16368 nconstwlpolem0 16390 nconstwlpolemgt0 16391 |
| Copyright terms: Public domain | W3C validator |