![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnuz | GIF version |
Description: Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
nnuz | ⊢ ℕ = (ℤ≥‘1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnzrab 9280 | . 2 ⊢ ℕ = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘} | |
2 | 1z 9282 | . . 3 ⊢ 1 ∈ ℤ | |
3 | uzval 9533 | . . 3 ⊢ (1 ∈ ℤ → (ℤ≥‘1) = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘}) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘1) = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘} |
5 | 1, 4 | eqtr4i 2201 | 1 ⊢ ℕ = (ℤ≥‘1) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 {crab 2459 class class class wbr 4005 ‘cfv 5218 1c1 7815 ≤ cle 7996 ℕcn 8922 ℤcz 9256 ℤ≥cuz 9531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-z 9257 df-uz 9532 |
This theorem is referenced by: elnnuz 9567 eluz2nn 9569 uznnssnn 9580 eluznn 9603 fzssnn 10071 fseq1p1m1 10097 fz01or 10114 nnsplit 10140 elfzo1 10193 exp3vallem 10524 exp3val 10525 facnn 10710 fac0 10711 bcm1k 10743 bcval5 10746 bcpasc 10749 seq3coll 10825 recvguniq 11007 resqrexlemf 11019 climuni 11304 climrecvg1n 11359 climcvg1nlem 11360 summodclem3 11391 summodclem2a 11392 fsum3 11398 sum0 11399 isumz 11400 fsumcl2lem 11409 fsumadd 11417 fsummulc2 11459 isumnn0nn 11504 divcnv 11508 trireciplem 11511 trirecip 11512 expcnvap0 11513 expcnv 11515 geo2lim 11527 geoisum1 11530 geoisum1c 11531 cvgratnnlemnexp 11535 cvgratnnlemseq 11537 cvgratnnlemrate 11541 cvgratnn 11542 mertenslem2 11547 prodmodclem3 11586 prodmodclem2a 11587 fprodseq 11594 prod0 11596 prod1dc 11597 fprodssdc 11601 fprodmul 11602 ege2le3 11682 nninfdcex 11957 gcdsupex 11961 gcdsupcl 11962 nnmindc 12038 nnminle 12039 lcmval 12066 lcmcllem 12070 lcmledvds 12073 isprm3 12121 phicl2 12217 phibndlem 12219 odzcllem 12245 odzdvds 12248 pcmptcl 12343 pcmpt 12344 pockthlem 12357 pockthg 12358 1arith 12368 ennnfonelemjn 12406 ssnnctlemct 12450 nninfdclemf 12453 nninfdclemp1 12454 mulgval 12999 mulgfng 13001 mulgnnp1 13005 mulgnnsubcl 13009 mulgnn0z 13024 mulgnndir 13026 mulgpropdg 13039 lmtopcnp 13938 lgsval 14593 lgscllem 14596 lgsval2lem 14599 lgsval4a 14611 lgsneg 14613 lgsdir 14624 lgsdilem2 14625 lgsdi 14626 lgsne0 14627 cvgcmp2nlemabs 14969 cvgcmp2n 14970 trilpolemcl 14974 trilpolemisumle 14975 trilpolemgt1 14976 trilpolemeq1 14977 trilpolemlt1 14978 nconstwlpolem0 15000 nconstwlpolemgt0 15001 |
Copyright terms: Public domain | W3C validator |