Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnuz | GIF version |
Description: Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
nnuz | ⊢ ℕ = (ℤ≥‘1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnzrab 9236 | . 2 ⊢ ℕ = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘} | |
2 | 1z 9238 | . . 3 ⊢ 1 ∈ ℤ | |
3 | uzval 9489 | . . 3 ⊢ (1 ∈ ℤ → (ℤ≥‘1) = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘}) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘1) = {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘} |
5 | 1, 4 | eqtr4i 2194 | 1 ⊢ ℕ = (ℤ≥‘1) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 {crab 2452 class class class wbr 3989 ‘cfv 5198 1c1 7775 ≤ cle 7955 ℕcn 8878 ℤcz 9212 ℤ≥cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-z 9213 df-uz 9488 |
This theorem is referenced by: elnnuz 9523 eluz2nn 9525 uznnssnn 9536 eluznn 9559 fzssnn 10024 fseq1p1m1 10050 fz01or 10067 nnsplit 10093 elfzo1 10146 exp3vallem 10477 exp3val 10478 facnn 10661 fac0 10662 bcm1k 10694 bcval5 10697 bcpasc 10700 seq3coll 10777 recvguniq 10959 resqrexlemf 10971 climuni 11256 climrecvg1n 11311 climcvg1nlem 11312 summodclem3 11343 summodclem2a 11344 fsum3 11350 sum0 11351 isumz 11352 fsumcl2lem 11361 fsumadd 11369 fsummulc2 11411 isumnn0nn 11456 divcnv 11460 trireciplem 11463 trirecip 11464 expcnvap0 11465 expcnv 11467 geo2lim 11479 geoisum1 11482 geoisum1c 11483 cvgratnnlemnexp 11487 cvgratnnlemseq 11489 cvgratnnlemrate 11493 cvgratnn 11494 mertenslem2 11499 prodmodclem3 11538 prodmodclem2a 11539 fprodseq 11546 prod0 11548 prod1dc 11549 fprodssdc 11553 fprodmul 11554 ege2le3 11634 nninfdcex 11908 gcdsupex 11912 gcdsupcl 11913 nnmindc 11989 nnminle 11990 lcmval 12017 lcmcllem 12021 lcmledvds 12024 isprm3 12072 phicl2 12168 phibndlem 12170 odzcllem 12196 odzdvds 12199 pcmptcl 12294 pcmpt 12295 pockthlem 12308 pockthg 12309 1arith 12319 ennnfonelemjn 12357 ssnnctlemct 12401 nninfdclemf 12404 nninfdclemp1 12405 lmtopcnp 13044 lgsval 13699 lgscllem 13702 lgsval2lem 13705 lgsval4a 13717 lgsneg 13719 lgsdir 13730 lgsdilem2 13731 lgsdi 13732 lgsne0 13733 cvgcmp2nlemabs 14064 cvgcmp2n 14065 trilpolemcl 14069 trilpolemisumle 14070 trilpolemgt1 14071 trilpolemeq1 14072 trilpolemlt1 14073 nconstwlpolem0 14094 nconstwlpolemgt0 14095 |
Copyright terms: Public domain | W3C validator |