Theorem List for Intuitionistic Logic Explorer - 9501-9600   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | nummac 9501 | 
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
         a fixed multiplicand 𝑃 (with carry).  (Contributed by Mario
         Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ 𝐶 ∈
 ℕ0   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)   
 &   ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)   
 &   ⊢ 𝑃 ∈ ℕ0    &   ⊢ 𝐹 ∈
 ℕ0   
 &   ⊢ 𝐺 ∈ ℕ0    &   ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸   
 &   ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)    ⇒   ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | 
|   | 
| Theorem | numma2c 9502 | 
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
         a fixed multiplicand 𝑃 (with carry).  (Contributed by Mario
         Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ 𝐶 ∈
 ℕ0   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)   
 &   ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)   
 &   ⊢ 𝑃 ∈ ℕ0    &   ⊢ 𝐹 ∈
 ℕ0   
 &   ⊢ 𝐺 ∈ ℕ0    &   ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸   
 &   ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)    ⇒   ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | 
|   | 
| Theorem | numadd 9503 | 
Add two decimal integers 𝑀 and 𝑁 (no carry). 
(Contributed by
         Mario Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ 𝐶 ∈
 ℕ0   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)   
 &   ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)   
 &   ⊢ (𝐴 + 𝐶) = 𝐸   
 &   ⊢ (𝐵 + 𝐷) = 𝐹    ⇒   ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | 
|   | 
| Theorem | numaddc 9504 | 
Add two decimal integers 𝑀 and 𝑁 (with carry). 
(Contributed
         by Mario Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ 𝐶 ∈
 ℕ0   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)   
 &   ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)   
 &   ⊢ 𝐹 ∈ ℕ0    &   ⊢ ((𝐴 + 𝐶) + 1) = 𝐸   
 &   ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)    ⇒   ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | 
|   | 
| Theorem | nummul1c 9505 | 
The product of a decimal integer with a number.  (Contributed by Mario
         Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝑃 ∈
 ℕ0   
 &   ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ 𝐸 ∈
 ℕ0   
 &   ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶   
 &   ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)    ⇒   ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) | 
|   | 
| Theorem | nummul2c 9506 | 
The product of a decimal integer with a number (with carry).
         (Contributed by Mario Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝑇 ∈ ℕ0    &   ⊢ 𝑃 ∈
 ℕ0   
 &   ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ 𝐸 ∈
 ℕ0   
 &   ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶   
 &   ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷)    ⇒   ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) | 
|   | 
| Theorem | decma 9507 | 
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
         multiplicand 𝑃 (no carry).  (Contributed by Mario
Carneiro,
         18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ 𝑁 = ;𝐶𝐷   
 &   ⊢ 𝑃 ∈ ℕ0    &   ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸   
 &   ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹    ⇒   ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | 
|   | 
| Theorem | decmac 9508 | 
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
         multiplicand 𝑃 (with carry).  (Contributed by Mario
Carneiro,
         18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ 𝑁 = ;𝐶𝐷   
 &   ⊢ 𝑃 ∈ ℕ0    &   ⊢ 𝐹 ∈
 ℕ0   
 &   ⊢ 𝐺 ∈ ℕ0    &   ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸   
 &   ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹    ⇒   ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | 
|   | 
| Theorem | decma2c 9509 | 
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
         multiplier 𝑃 (with carry).  (Contributed by Mario
Carneiro,
         18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ 𝑁 = ;𝐶𝐷   
 &   ⊢ 𝑃 ∈ ℕ0    &   ⊢ 𝐹 ∈
 ℕ0   
 &   ⊢ 𝐺 ∈ ℕ0    &   ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸   
 &   ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹    ⇒   ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 | 
|   | 
| Theorem | decadd 9510 | 
Add two numerals 𝑀 and 𝑁 (no carry). 
(Contributed by Mario
         Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ 𝑁 = ;𝐶𝐷   
 &   ⊢ (𝐴 + 𝐶) = 𝐸   
 &   ⊢ (𝐵 + 𝐷) = 𝐹    ⇒   ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 | 
|   | 
| Theorem | decaddc 9511 | 
Add two numerals 𝑀 and 𝑁 (with carry). 
(Contributed by Mario
         Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ 𝑁 = ;𝐶𝐷   
 &   ⊢ ((𝐴 + 𝐶) + 1) = 𝐸   
 &   ⊢ 𝐹 ∈ ℕ0    &   ⊢ (𝐵 + 𝐷) = ;1𝐹    ⇒   ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 | 
|   | 
| Theorem | decaddc2 9512 | 
Add two numerals 𝑀 and 𝑁 (with carry). 
(Contributed by Mario
       Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ 𝑁 = ;𝐶𝐷   
 &   ⊢ ((𝐴 + 𝐶) + 1) = 𝐸   
 &   ⊢ (𝐵 + 𝐷) = ;10    ⇒   ⊢ (𝑀 + 𝑁) = ;𝐸0 | 
|   | 
| Theorem | decrmanc 9513 | 
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
         multiplicand 𝑃 (no carry).  (Contributed by AV,
16-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝑁 ∈ ℕ0    &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ 𝑃 ∈ ℕ0    &   ⊢ (𝐴 · 𝑃) = 𝐸   
 &   ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹    ⇒   ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | 
|   | 
| Theorem | decrmac 9514 | 
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
         multiplicand 𝑃 (with carry).  (Contributed by AV,
16-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝑁 ∈ ℕ0    &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ 𝑃 ∈ ℕ0    &   ⊢ 𝐹 ∈
 ℕ0   
 &   ⊢ 𝐺 ∈ ℕ0    &   ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸   
 &   ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹    ⇒   ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | 
|   | 
| Theorem | decaddm10 9515 | 
The sum of two multiples of 10 is a multiple of 10.  (Contributed by AV,
       30-Jul-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0    ⇒   ⊢ (;𝐴0 + ;𝐵0) = ;(𝐴 + 𝐵)0 | 
|   | 
| Theorem | decaddi 9516 | 
Add two numerals 𝑀 and 𝑁 (no carry). 
(Contributed by Mario
         Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝑁 ∈ ℕ0    &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ (𝐵 + 𝑁) = 𝐶    ⇒   ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 | 
|   | 
| Theorem | decaddci 9517 | 
Add two numerals 𝑀 and 𝑁 (no carry). 
(Contributed by Mario
         Carneiro, 18-Feb-2014.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝑁 ∈ ℕ0    &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ (𝐴 + 1) = 𝐷   
 &   ⊢ 𝐶 ∈ ℕ0    &   ⊢ (𝐵 + 𝑁) = ;1𝐶    ⇒   ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 | 
|   | 
| Theorem | decaddci2 9518 | 
Add two numerals 𝑀 and 𝑁 (no carry). 
(Contributed by Mario
         Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝑁 ∈ ℕ0    &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ (𝐴 + 1) = 𝐷   
 &   ⊢ (𝐵 + 𝑁) = ;10    ⇒   ⊢ (𝑀 + 𝑁) = ;𝐷0 | 
|   | 
| Theorem | decsubi 9519 | 
Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no
         underflow).  (Contributed by AV, 22-Jul-2021.)  (Revised by AV,
         6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝑁 ∈ ℕ0    &   ⊢ 𝑀 = ;𝐴𝐵   
 &   ⊢ (𝐴 + 1) = 𝐷   
 &   ⊢ (𝐵 − 𝑁) = 𝐶    ⇒   ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 | 
|   | 
| Theorem | decmul1 9520 | 
The product of a numeral with a number (no carry).  (Contributed by
         AV, 22-Jul-2021.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝑃 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ 𝑁 = ;𝐴𝐵   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ (𝐴 · 𝑃) = 𝐶   
 &   ⊢ (𝐵 · 𝑃) = 𝐷    ⇒   ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | 
|   | 
| Theorem | decmul1c 9521 | 
The product of a numeral with a number (with carry).  (Contributed by
         Mario Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝑃 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ 𝑁 = ;𝐴𝐵   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ 𝐸 ∈
 ℕ0   
 &   ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶   
 &   ⊢ (𝐵 · 𝑃) = ;𝐸𝐷    ⇒   ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | 
|   | 
| Theorem | decmul2c 9522 | 
The product of a numeral with a number (with carry).  (Contributed by
       Mario Carneiro, 18-Feb-2014.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝑃 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈ ℕ0    &   ⊢ 𝑁 = ;𝐴𝐵   
 &   ⊢ 𝐷 ∈ ℕ0    &   ⊢ 𝐸 ∈
 ℕ0   
 &   ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶   
 &   ⊢ (𝑃 · 𝐵) = ;𝐸𝐷    ⇒   ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 | 
|   | 
| Theorem | decmulnc 9523 | 
The product of a numeral with a number (no carry).  (Contributed by AV,
       15-Jun-2021.)
 | 
| ⊢ 𝑁 ∈ ℕ0    &   ⊢ 𝐴 ∈
 ℕ0   
 &   ⊢ 𝐵 ∈
 ℕ0    ⇒   ⊢ (𝑁 · ;𝐴𝐵) = ;(𝑁 · 𝐴)(𝑁 · 𝐵) | 
|   | 
| Theorem | 11multnc 9524 | 
The product of 11 (as numeral) with a number (no carry).  (Contributed
       by AV, 15-Jun-2021.)
 | 
| ⊢ 𝑁 ∈
 ℕ0    ⇒   ⊢ (𝑁 · ;11) = ;𝑁𝑁 | 
|   | 
| Theorem | decmul10add 9525 | 
A multiplication of a number and a numeral expressed as addition with
       first summand as multiple of 10.  (Contributed by AV, 22-Jul-2021.)
       (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝑀 ∈ ℕ0    &   ⊢ 𝐸 = (𝑀 · 𝐴)   
 &   ⊢ 𝐹 = (𝑀 · 𝐵)    ⇒   ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) | 
|   | 
| Theorem | 6p5lem 9526 | 
Lemma for 6p5e11 9529 and related theorems.  (Contributed by Mario
       Carneiro, 19-Apr-2015.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐷 ∈
 ℕ0   
 &   ⊢ 𝐸 ∈ ℕ0    &   ⊢ 𝐵 = (𝐷 + 1)    &   ⊢ 𝐶 = (𝐸 + 1)    &   ⊢ (𝐴 + 𝐷) = ;1𝐸    ⇒   ⊢ (𝐴 + 𝐵) = ;1𝐶 | 
|   | 
| Theorem | 5p5e10 9527 | 
5 + 5 = 10.  (Contributed by NM, 5-Feb-2007.)  (Revised by Stanislas Polu,
     7-Apr-2020.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (5 + 5) = ;10 | 
|   | 
| Theorem | 6p4e10 9528 | 
6 + 4 = 10.  (Contributed by NM, 5-Feb-2007.)  (Revised by Stanislas Polu,
     7-Apr-2020.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (6 + 4) = ;10 | 
|   | 
| Theorem | 6p5e11 9529 | 
6 + 5 = 11.  (Contributed by Mario Carneiro, 19-Apr-2015.)  (Revised by
     AV, 6-Sep-2021.)
 | 
| ⊢ (6 + 5) = ;11 | 
|   | 
| Theorem | 6p6e12 9530 | 
6 + 6 = 12.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (6 + 6) = ;12 | 
|   | 
| Theorem | 7p3e10 9531 | 
7 + 3 = 10.  (Contributed by NM, 5-Feb-2007.)  (Revised by Stanislas Polu,
     7-Apr-2020.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (7 + 3) = ;10 | 
|   | 
| Theorem | 7p4e11 9532 | 
7 + 4 = 11.  (Contributed by Mario Carneiro, 19-Apr-2015.)  (Revised by
     AV, 6-Sep-2021.)
 | 
| ⊢ (7 + 4) = ;11 | 
|   | 
| Theorem | 7p5e12 9533 | 
7 + 5 = 12.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (7 + 5) = ;12 | 
|   | 
| Theorem | 7p6e13 9534 | 
7 + 6 = 13.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (7 + 6) = ;13 | 
|   | 
| Theorem | 7p7e14 9535 | 
7 + 7 = 14.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (7 + 7) = ;14 | 
|   | 
| Theorem | 8p2e10 9536 | 
8 + 2 = 10.  (Contributed by NM, 5-Feb-2007.)  (Revised by Stanislas Polu,
     7-Apr-2020.)  (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (8 + 2) = ;10 | 
|   | 
| Theorem | 8p3e11 9537 | 
8 + 3 = 11.  (Contributed by Mario Carneiro, 19-Apr-2015.)  (Revised by
     AV, 6-Sep-2021.)
 | 
| ⊢ (8 + 3) = ;11 | 
|   | 
| Theorem | 8p4e12 9538 | 
8 + 4 = 12.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (8 + 4) = ;12 | 
|   | 
| Theorem | 8p5e13 9539 | 
8 + 5 = 13.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (8 + 5) = ;13 | 
|   | 
| Theorem | 8p6e14 9540 | 
8 + 6 = 14.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (8 + 6) = ;14 | 
|   | 
| Theorem | 8p7e15 9541 | 
8 + 7 = 15.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (8 + 7) = ;15 | 
|   | 
| Theorem | 8p8e16 9542 | 
8 + 8 = 16.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (8 + 8) = ;16 | 
|   | 
| Theorem | 9p2e11 9543 | 
9 + 2 = 11.  (Contributed by Mario Carneiro, 19-Apr-2015.)  (Revised by
     AV, 6-Sep-2021.)
 | 
| ⊢ (9 + 2) = ;11 | 
|   | 
| Theorem | 9p3e12 9544 | 
9 + 3 = 12.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 + 3) = ;12 | 
|   | 
| Theorem | 9p4e13 9545 | 
9 + 4 = 13.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 + 4) = ;13 | 
|   | 
| Theorem | 9p5e14 9546 | 
9 + 5 = 14.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 + 5) = ;14 | 
|   | 
| Theorem | 9p6e15 9547 | 
9 + 6 = 15.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 + 6) = ;15 | 
|   | 
| Theorem | 9p7e16 9548 | 
9 + 7 = 16.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 + 7) = ;16 | 
|   | 
| Theorem | 9p8e17 9549 | 
9 + 8 = 17.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 + 8) = ;17 | 
|   | 
| Theorem | 9p9e18 9550 | 
9 + 9 = 18.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 + 9) = ;18 | 
|   | 
| Theorem | 10p10e20 9551 | 
10 + 10 = 20.  (Contributed by Mario Carneiro, 19-Apr-2015.)  (Revised by
     AV, 6-Sep-2021.)
 | 
| ⊢ (;10 + ;10) = ;20 | 
|   | 
| Theorem | 10m1e9 9552 | 
10 - 1 = 9.  (Contributed by AV, 6-Sep-2021.)
 | 
| ⊢ (;10 − 1) = 9 | 
|   | 
| Theorem | 4t3lem 9553 | 
Lemma for 4t3e12 9554 and related theorems.  (Contributed by Mario
       Carneiro, 19-Apr-2015.)
 | 
| ⊢ 𝐴 ∈ ℕ0    &   ⊢ 𝐵 ∈
 ℕ0   
 &   ⊢ 𝐶 = (𝐵 + 1)    &   ⊢ (𝐴 · 𝐵) = 𝐷   
 &   ⊢ (𝐷 + 𝐴) = 𝐸    ⇒   ⊢ (𝐴 · 𝐶) = 𝐸 | 
|   | 
| Theorem | 4t3e12 9554 | 
4 times 3 equals 12.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (4 · 3) = ;12 | 
|   | 
| Theorem | 4t4e16 9555 | 
4 times 4 equals 16.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (4 · 4) = ;16 | 
|   | 
| Theorem | 5t2e10 9556 | 
5 times 2 equals 10.  (Contributed by NM, 5-Feb-2007.)  (Revised by AV,
     4-Sep-2021.)
 | 
| ⊢ (5 · 2) = ;10 | 
|   | 
| Theorem | 5t3e15 9557 | 
5 times 3 equals 15.  (Contributed by Mario Carneiro, 19-Apr-2015.)
     (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (5 · 3) = ;15 | 
|   | 
| Theorem | 5t4e20 9558 | 
5 times 4 equals 20.  (Contributed by Mario Carneiro, 19-Apr-2015.)
     (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (5 · 4) = ;20 | 
|   | 
| Theorem | 5t5e25 9559 | 
5 times 5 equals 25.  (Contributed by Mario Carneiro, 19-Apr-2015.)
     (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (5 · 5) = ;25 | 
|   | 
| Theorem | 6t2e12 9560 | 
6 times 2 equals 12.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (6 · 2) = ;12 | 
|   | 
| Theorem | 6t3e18 9561 | 
6 times 3 equals 18.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (6 · 3) = ;18 | 
|   | 
| Theorem | 6t4e24 9562 | 
6 times 4 equals 24.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (6 · 4) = ;24 | 
|   | 
| Theorem | 6t5e30 9563 | 
6 times 5 equals 30.  (Contributed by Mario Carneiro, 19-Apr-2015.)
     (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (6 · 5) = ;30 | 
|   | 
| Theorem | 6t6e36 9564 | 
6 times 6 equals 36.  (Contributed by Mario Carneiro, 19-Apr-2015.)
     (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (6 · 6) = ;36 | 
|   | 
| Theorem | 7t2e14 9565 | 
7 times 2 equals 14.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (7 · 2) = ;14 | 
|   | 
| Theorem | 7t3e21 9566 | 
7 times 3 equals 21.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (7 · 3) = ;21 | 
|   | 
| Theorem | 7t4e28 9567 | 
7 times 4 equals 28.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (7 · 4) = ;28 | 
|   | 
| Theorem | 7t5e35 9568 | 
7 times 5 equals 35.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (7 · 5) = ;35 | 
|   | 
| Theorem | 7t6e42 9569 | 
7 times 6 equals 42.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (7 · 6) = ;42 | 
|   | 
| Theorem | 7t7e49 9570 | 
7 times 7 equals 49.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (7 · 7) = ;49 | 
|   | 
| Theorem | 8t2e16 9571 | 
8 times 2 equals 16.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (8 · 2) = ;16 | 
|   | 
| Theorem | 8t3e24 9572 | 
8 times 3 equals 24.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (8 · 3) = ;24 | 
|   | 
| Theorem | 8t4e32 9573 | 
8 times 4 equals 32.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (8 · 4) = ;32 | 
|   | 
| Theorem | 8t5e40 9574 | 
8 times 5 equals 40.  (Contributed by Mario Carneiro, 19-Apr-2015.)
     (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (8 · 5) = ;40 | 
|   | 
| Theorem | 8t6e48 9575 | 
8 times 6 equals 48.  (Contributed by Mario Carneiro, 19-Apr-2015.)
     (Revised by AV, 6-Sep-2021.)
 | 
| ⊢ (8 · 6) = ;48 | 
|   | 
| Theorem | 8t7e56 9576 | 
8 times 7 equals 56.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (8 · 7) = ;56 | 
|   | 
| Theorem | 8t8e64 9577 | 
8 times 8 equals 64.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (8 · 8) = ;64 | 
|   | 
| Theorem | 9t2e18 9578 | 
9 times 2 equals 18.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 · 2) = ;18 | 
|   | 
| Theorem | 9t3e27 9579 | 
9 times 3 equals 27.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 · 3) = ;27 | 
|   | 
| Theorem | 9t4e36 9580 | 
9 times 4 equals 36.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 · 4) = ;36 | 
|   | 
| Theorem | 9t5e45 9581 | 
9 times 5 equals 45.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 · 5) = ;45 | 
|   | 
| Theorem | 9t6e54 9582 | 
9 times 6 equals 54.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 · 6) = ;54 | 
|   | 
| Theorem | 9t7e63 9583 | 
9 times 7 equals 63.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 · 7) = ;63 | 
|   | 
| Theorem | 9t8e72 9584 | 
9 times 8 equals 72.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 · 8) = ;72 | 
|   | 
| Theorem | 9t9e81 9585 | 
9 times 9 equals 81.  (Contributed by Mario Carneiro, 19-Apr-2015.)
 | 
| ⊢ (9 · 9) = ;81 | 
|   | 
| Theorem | 9t11e99 9586 | 
9 times 11 equals 99.  (Contributed by AV, 14-Jun-2021.)  (Revised by AV,
     6-Sep-2021.)
 | 
| ⊢ (9 · ;11) = ;99 | 
|   | 
| Theorem | 9lt10 9587 | 
9 is less than 10.  (Contributed by Mario Carneiro, 8-Feb-2015.)  (Revised
     by AV, 8-Sep-2021.)
 | 
| ⊢ 9 < ;10 | 
|   | 
| Theorem | 8lt10 9588 | 
8 is less than 10.  (Contributed by Mario Carneiro, 8-Feb-2015.)  (Revised
     by AV, 8-Sep-2021.)
 | 
| ⊢ 8 < ;10 | 
|   | 
| Theorem | 7lt10 9589 | 
7 is less than 10.  (Contributed by Mario Carneiro, 10-Mar-2015.)
     (Revised by AV, 8-Sep-2021.)
 | 
| ⊢ 7 < ;10 | 
|   | 
| Theorem | 6lt10 9590 | 
6 is less than 10.  (Contributed by Mario Carneiro, 10-Mar-2015.)
     (Revised by AV, 8-Sep-2021.)
 | 
| ⊢ 6 < ;10 | 
|   | 
| Theorem | 5lt10 9591 | 
5 is less than 10.  (Contributed by Mario Carneiro, 10-Mar-2015.)
     (Revised by AV, 8-Sep-2021.)
 | 
| ⊢ 5 < ;10 | 
|   | 
| Theorem | 4lt10 9592 | 
4 is less than 10.  (Contributed by Mario Carneiro, 10-Mar-2015.)
     (Revised by AV, 8-Sep-2021.)
 | 
| ⊢ 4 < ;10 | 
|   | 
| Theorem | 3lt10 9593 | 
3 is less than 10.  (Contributed by Mario Carneiro, 10-Mar-2015.)
     (Revised by AV, 8-Sep-2021.)
 | 
| ⊢ 3 < ;10 | 
|   | 
| Theorem | 2lt10 9594 | 
2 is less than 10.  (Contributed by Mario Carneiro, 10-Mar-2015.)
     (Revised by AV, 8-Sep-2021.)
 | 
| ⊢ 2 < ;10 | 
|   | 
| Theorem | 1lt10 9595 | 
1 is less than 10.  (Contributed by NM, 7-Nov-2012.)  (Revised by Mario
     Carneiro, 9-Mar-2015.)  (Revised by AV, 8-Sep-2021.)
 | 
| ⊢ 1 < ;10 | 
|   | 
| Theorem | decbin0 9596 | 
Decompose base 4 into base 2.  (Contributed by Mario Carneiro,
       18-Feb-2014.)
 | 
| ⊢ 𝐴 ∈
 ℕ0    ⇒   ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) | 
|   | 
| Theorem | decbin2 9597 | 
Decompose base 4 into base 2.  (Contributed by Mario Carneiro,
       18-Feb-2014.)
 | 
| ⊢ 𝐴 ∈
 ℕ0    ⇒   ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) | 
|   | 
| Theorem | decbin3 9598 | 
Decompose base 4 into base 2.  (Contributed by Mario Carneiro,
       18-Feb-2014.)
 | 
| ⊢ 𝐴 ∈
 ℕ0    ⇒   ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) | 
|   | 
| Theorem | halfthird 9599 | 
Half minus a third.  (Contributed by Scott Fenton, 8-Jul-2015.)
 | 
| ⊢ ((1 / 2) − (1 / 3)) = (1 /
 6) | 
|   | 
| Theorem | 5recm6rec 9600 | 
One fifth minus one sixth.  (Contributed by Scott Fenton, 9-Jan-2017.)
 | 
| ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |