Theorem List for Intuitionistic Logic Explorer - 9501-9600 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | declt 9501 |
Comparing two decimal integers (equal higher places). (Contributed by
Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ;𝐴𝐵 < ;𝐴𝐶 |
| |
| Theorem | decltc 9502 |
Comparing two decimal integers (unequal higher places). (Contributed
by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 < ;10
& ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 |
| |
| Theorem | declth 9503 |
Comparing two decimal integers (unequal higher places). (Contributed
by AV, 8-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 |
| |
| Theorem | decsuc 9504 |
The successor of a decimal integer (no carry). (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ (𝐵 + 1) = 𝐶
& ⊢ 𝑁 = ;𝐴𝐵 ⇒ ⊢ (𝑁 + 1) = ;𝐴𝐶 |
| |
| Theorem | 3declth 9505 |
Comparing two decimal integers with three "digits" (unequal higher
places). (Contributed by AV, 8-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐴 < 𝐵
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐸 ≤
9 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 |
| |
| Theorem | 3decltc 9506 |
Comparing two decimal integers with three "digits" (unequal higher
places). (Contributed by AV, 15-Jun-2021.) (Revised by AV,
6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐴 < 𝐵
& ⊢ 𝐶 < ;10
& ⊢ 𝐸 < ;10 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 |
| |
| Theorem | decle 9507 |
Comparing two decimal integers (equal higher places). (Contributed by
AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐵 ≤ 𝐶 ⇒ ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
| |
| Theorem | decleh 9508 |
Comparing two decimal integers (unequal higher places). (Contributed by
AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 ≤ ;𝐵𝐷 |
| |
| Theorem | declei 9509 |
Comparing a digit to a decimal integer. (Contributed by AV,
17-Aug-2021.)
|
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤
9 ⇒ ⊢ 𝐶 ≤ ;𝐴𝐵 |
| |
| Theorem | numlti 9510 |
Comparing a digit to a decimal integer. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < 𝑇 ⇒ ⊢ 𝐶 < ((𝑇 · 𝐴) + 𝐵) |
| |
| Theorem | declti 9511 |
Comparing a digit to a decimal integer. (Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < ;10 ⇒ ⊢ 𝐶 < ;𝐴𝐵 |
| |
| Theorem | decltdi 9512 |
Comparing a digit to a decimal integer. (Contributed by AV,
8-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤
9 ⇒ ⊢ 𝐶 < ;𝐴𝐵 |
| |
| Theorem | numsucc 9513 |
The successor of a decimal integer (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑌 ∈ ℕ0 & ⊢ 𝑇 = (𝑌 + 1) & ⊢ 𝐴 ∈
ℕ0
& ⊢ (𝐴 + 1) = 𝐵
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
| |
| Theorem | decsucc 9514 |
The successor of a decimal integer (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵
& ⊢ 𝑁 = ;𝐴9 ⇒ ⊢ (𝑁 + 1) = ;𝐵0 |
| |
| Theorem | 1e0p1 9515 |
The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
|
| ⊢ 1 = (0 + 1) |
| |
| Theorem | dec10p 9516 |
Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (;10 + 𝐴) = ;1𝐴 |
| |
| Theorem | numma 9517 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (no carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| |
| Theorem | nummac 9518 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| |
| Theorem | numma2c 9519 |
Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against
a fixed multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| |
| Theorem | numadd 9520 |
Add two decimal integers 𝑀 and 𝑁 (no carry).
(Contributed by
Mario Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ (𝐴 + 𝐶) = 𝐸
& ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| |
| Theorem | numaddc 9521 |
Add two decimal integers 𝑀 and 𝑁 (with carry).
(Contributed
by Mario Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈
ℕ0
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷)
& ⊢ 𝐹 ∈ ℕ0 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| |
| Theorem | nummul1c 9522 |
The product of a decimal integer with a number. (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈
ℕ0
& ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶
& ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
| |
| Theorem | nummul2c 9523 |
The product of a decimal integer with a number (with carry).
(Contributed by Mario Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈
ℕ0
& ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵)
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶
& ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) |
| |
| Theorem | decma 9524 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (no carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| |
| Theorem | decmac 9525 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| |
| Theorem | decma2c 9526 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplier 𝑃 (with carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 |
| |
| Theorem | decadd 9527 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ (𝐴 + 𝐶) = 𝐸
& ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
| |
| Theorem | decaddc 9528 |
Add two numerals 𝑀 and 𝑁 (with carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ 𝐹 ∈ ℕ0 & ⊢ (𝐵 + 𝐷) = ;1𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
| |
| Theorem | decaddc2 9529 |
Add two numerals 𝑀 and 𝑁 (with carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ (𝐵 + 𝐷) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸0 |
| |
| Theorem | decrmanc 9530 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (no carry). (Contributed by AV,
16-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑃 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| |
| Theorem | decrmac 9531 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (with carry). (Contributed by AV,
16-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| |
| Theorem | decaddm10 9532 |
The sum of two multiples of 10 is a multiple of 10. (Contributed by AV,
30-Jul-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ (;𝐴0 + ;𝐵0) = ;(𝐴 + 𝐵)0 |
| |
| Theorem | decaddi 9533 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐵 + 𝑁) = 𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
| |
| Theorem | decaddci 9534 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ 𝐶 ∈ ℕ0 & ⊢ (𝐵 + 𝑁) = ;1𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| |
| Theorem | decaddci2 9535 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ (𝐵 + 𝑁) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷0 |
| |
| Theorem | decsubi 9536 |
Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no
underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV,
6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ (𝐵 − 𝑁) = 𝐶 ⇒ ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
| |
| Theorem | decmul1 9537 |
The product of a numeral with a number (no carry). (Contributed by
AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐶
& ⊢ (𝐵 · 𝑃) = 𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
| |
| Theorem | decmul1c 9538 |
The product of a numeral with a number (with carry). (Contributed by
Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶
& ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
| |
| Theorem | decmul2c 9539 |
The product of a numeral with a number (with carry). (Contributed by
Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶
& ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 ⇒ ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 |
| |
| Theorem | decmulnc 9540 |
The product of a numeral with a number (no carry). (Contributed by AV,
15-Jun-2021.)
|
| ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ (𝑁 · ;𝐴𝐵) = ;(𝑁 · 𝐴)(𝑁 · 𝐵) |
| |
| Theorem | 11multnc 9541 |
The product of 11 (as numeral) with a number (no carry). (Contributed
by AV, 15-Jun-2021.)
|
| ⊢ 𝑁 ∈
ℕ0 ⇒ ⊢ (𝑁 · ;11) = ;𝑁𝑁 |
| |
| Theorem | decmul10add 9542 |
A multiplication of a number and a numeral expressed as addition with
first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐸 = (𝑀 · 𝐴)
& ⊢ 𝐹 = (𝑀 · 𝐵) ⇒ ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) |
| |
| Theorem | 6p5lem 9543 |
Lemma for 6p5e11 9546 and related theorems. (Contributed by Mario
Carneiro, 19-Apr-2015.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐵 = (𝐷 + 1) & ⊢ 𝐶 = (𝐸 + 1) & ⊢ (𝐴 + 𝐷) = ;1𝐸 ⇒ ⊢ (𝐴 + 𝐵) = ;1𝐶 |
| |
| Theorem | 5p5e10 9544 |
5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ (5 + 5) = ;10 |
| |
| Theorem | 6p4e10 9545 |
6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ (6 + 4) = ;10 |
| |
| Theorem | 6p5e11 9546 |
6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
| ⊢ (6 + 5) = ;11 |
| |
| Theorem | 6p6e12 9547 |
6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (6 + 6) = ;12 |
| |
| Theorem | 7p3e10 9548 |
7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ (7 + 3) = ;10 |
| |
| Theorem | 7p4e11 9549 |
7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
| ⊢ (7 + 4) = ;11 |
| |
| Theorem | 7p5e12 9550 |
7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 + 5) = ;12 |
| |
| Theorem | 7p6e13 9551 |
7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 + 6) = ;13 |
| |
| Theorem | 7p7e14 9552 |
7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 + 7) = ;14 |
| |
| Theorem | 8p2e10 9553 |
8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ (8 + 2) = ;10 |
| |
| Theorem | 8p3e11 9554 |
8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
| ⊢ (8 + 3) = ;11 |
| |
| Theorem | 8p4e12 9555 |
8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 + 4) = ;12 |
| |
| Theorem | 8p5e13 9556 |
8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 + 5) = ;13 |
| |
| Theorem | 8p6e14 9557 |
8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 + 6) = ;14 |
| |
| Theorem | 8p7e15 9558 |
8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 + 7) = ;15 |
| |
| Theorem | 8p8e16 9559 |
8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 + 8) = ;16 |
| |
| Theorem | 9p2e11 9560 |
9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
| ⊢ (9 + 2) = ;11 |
| |
| Theorem | 9p3e12 9561 |
9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 3) = ;12 |
| |
| Theorem | 9p4e13 9562 |
9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 4) = ;13 |
| |
| Theorem | 9p5e14 9563 |
9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 5) = ;14 |
| |
| Theorem | 9p6e15 9564 |
9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 6) = ;15 |
| |
| Theorem | 9p7e16 9565 |
9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 7) = ;16 |
| |
| Theorem | 9p8e17 9566 |
9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 8) = ;17 |
| |
| Theorem | 9p9e18 9567 |
9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 + 9) = ;18 |
| |
| Theorem | 10p10e20 9568 |
10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
| ⊢ (;10 + ;10) = ;20 |
| |
| Theorem | 10m1e9 9569 |
10 - 1 = 9. (Contributed by AV, 6-Sep-2021.)
|
| ⊢ (;10 − 1) = 9 |
| |
| Theorem | 4t3lem 9570 |
Lemma for 4t3e12 9571 and related theorems. (Contributed by Mario
Carneiro, 19-Apr-2015.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 = (𝐵 + 1) & ⊢ (𝐴 · 𝐵) = 𝐷
& ⊢ (𝐷 + 𝐴) = 𝐸 ⇒ ⊢ (𝐴 · 𝐶) = 𝐸 |
| |
| Theorem | 4t3e12 9571 |
4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (4 · 3) = ;12 |
| |
| Theorem | 4t4e16 9572 |
4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (4 · 4) = ;16 |
| |
| Theorem | 5t2e10 9573 |
5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV,
4-Sep-2021.)
|
| ⊢ (5 · 2) = ;10 |
| |
| Theorem | 5t3e15 9574 |
5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (5 · 3) = ;15 |
| |
| Theorem | 5t4e20 9575 |
5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (5 · 4) = ;20 |
| |
| Theorem | 5t5e25 9576 |
5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (5 · 5) = ;25 |
| |
| Theorem | 6t2e12 9577 |
6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (6 · 2) = ;12 |
| |
| Theorem | 6t3e18 9578 |
6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (6 · 3) = ;18 |
| |
| Theorem | 6t4e24 9579 |
6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (6 · 4) = ;24 |
| |
| Theorem | 6t5e30 9580 |
6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (6 · 5) = ;30 |
| |
| Theorem | 6t6e36 9581 |
6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (6 · 6) = ;36 |
| |
| Theorem | 7t2e14 9582 |
7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 2) = ;14 |
| |
| Theorem | 7t3e21 9583 |
7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 3) = ;21 |
| |
| Theorem | 7t4e28 9584 |
7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 4) = ;28 |
| |
| Theorem | 7t5e35 9585 |
7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 5) = ;35 |
| |
| Theorem | 7t6e42 9586 |
7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 6) = ;42 |
| |
| Theorem | 7t7e49 9587 |
7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (7 · 7) = ;49 |
| |
| Theorem | 8t2e16 9588 |
8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 · 2) = ;16 |
| |
| Theorem | 8t3e24 9589 |
8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 · 3) = ;24 |
| |
| Theorem | 8t4e32 9590 |
8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 · 4) = ;32 |
| |
| Theorem | 8t5e40 9591 |
8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (8 · 5) = ;40 |
| |
| Theorem | 8t6e48 9592 |
8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ (8 · 6) = ;48 |
| |
| Theorem | 8t7e56 9593 |
8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 · 7) = ;56 |
| |
| Theorem | 8t8e64 9594 |
8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (8 · 8) = ;64 |
| |
| Theorem | 9t2e18 9595 |
9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 2) = ;18 |
| |
| Theorem | 9t3e27 9596 |
9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 3) = ;27 |
| |
| Theorem | 9t4e36 9597 |
9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 4) = ;36 |
| |
| Theorem | 9t5e45 9598 |
9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 5) = ;45 |
| |
| Theorem | 9t6e54 9599 |
9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 6) = ;54 |
| |
| Theorem | 9t7e63 9600 |
9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ (9 · 7) = ;63 |