Type | Label | Description |
Statement |
|
Theorem | 8t3e24 9501 |
8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 3) = ;24 |
|
Theorem | 8t4e32 9502 |
8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 4) = ;32 |
|
Theorem | 8t5e40 9503 |
8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (8 · 5) = ;40 |
|
Theorem | 8t6e48 9504 |
8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (8 · 6) = ;48 |
|
Theorem | 8t7e56 9505 |
8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 7) = ;56 |
|
Theorem | 8t8e64 9506 |
8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 8) = ;64 |
|
Theorem | 9t2e18 9507 |
9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 2) = ;18 |
|
Theorem | 9t3e27 9508 |
9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 3) = ;27 |
|
Theorem | 9t4e36 9509 |
9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 4) = ;36 |
|
Theorem | 9t5e45 9510 |
9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 5) = ;45 |
|
Theorem | 9t6e54 9511 |
9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 6) = ;54 |
|
Theorem | 9t7e63 9512 |
9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 7) = ;63 |
|
Theorem | 9t8e72 9513 |
9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 8) = ;72 |
|
Theorem | 9t9e81 9514 |
9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 9) = ;81 |
|
Theorem | 9t11e99 9515 |
9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV,
6-Sep-2021.)
|
⊢ (9 · ;11) = ;99 |
|
Theorem | 9lt10 9516 |
9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
⊢ 9 < ;10 |
|
Theorem | 8lt10 9517 |
8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
⊢ 8 < ;10 |
|
Theorem | 7lt10 9518 |
7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 7 < ;10 |
|
Theorem | 6lt10 9519 |
6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 6 < ;10 |
|
Theorem | 5lt10 9520 |
5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 5 < ;10 |
|
Theorem | 4lt10 9521 |
4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 4 < ;10 |
|
Theorem | 3lt10 9522 |
3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 3 < ;10 |
|
Theorem | 2lt10 9523 |
2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 2 < ;10 |
|
Theorem | 1lt10 9524 |
1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario
Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
|
⊢ 1 < ;10 |
|
Theorem | decbin0 9525 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
|
Theorem | decbin2 9526 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
|
Theorem | decbin3 9527 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) |
|
Theorem | halfthird 9528 |
Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.)
|
⊢ ((1 / 2) − (1 / 3)) = (1 /
6) |
|
Theorem | 5recm6rec 9529 |
One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
|
⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
|
4.4.11 Upper sets of integers
|
|
Syntax | cuz 9530 |
Extend class notation with the upper integer function.
Read "ℤ≥‘𝑀 " as "the set of integers
greater than or equal to
𝑀".
|
class ℤ≥ |
|
Definition | df-uz 9531* |
Define a function whose value at 𝑗 is the semi-infinite set of
contiguous integers starting at 𝑗, which we will also call the
upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set
of integers greater than or equal to 𝑀". See uzval 9532 for its
value, uzssz 9549 for its relationship to ℤ, nnuz 9565 and nn0uz 9564 for
its relationships to ℕ and ℕ0, and eluz1 9534 and eluz2 9536 for
its membership relations. (Contributed by NM, 5-Sep-2005.)
|
⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
|
Theorem | uzval 9532* |
The value of the upper integers function. (Contributed by NM,
5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ (𝑁 ∈ ℤ →
(ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
|
Theorem | uzf 9533 |
The domain and codomain of the upper integers function. (Contributed by
Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢
ℤ≥:ℤ⟶𝒫
ℤ |
|
Theorem | eluz1 9534 |
Membership in the upper set of integers starting at 𝑀.
(Contributed by NM, 5-Sep-2005.)
|
⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
|
Theorem | eluzel2 9535 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
|
Theorem | eluz2 9536 |
Membership in an upper set of integers. We use the fact that a
function's value (under our function value definition) is empty outside
of its domain to show 𝑀 ∈ ℤ. (Contributed by NM,
5-Sep-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
|
Theorem | eluz1i 9537 |
Membership in an upper set of integers. (Contributed by NM,
5-Sep-2005.)
|
⊢ 𝑀 ∈ ℤ
⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
|
Theorem | eluzuzle 9538 |
An integer in an upper set of integers is an element of an upper set of
integers with a smaller bound. (Contributed by Alexander van der Vekens,
17-Jun-2018.)
|
⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
|
Theorem | eluzelz 9539 |
A member of an upper set of integers is an integer. (Contributed by NM,
6-Sep-2005.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
|
Theorem | eluzelre 9540 |
A member of an upper set of integers is a real. (Contributed by Mario
Carneiro, 31-Aug-2013.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
|
Theorem | eluzelcn 9541 |
A member of an upper set of integers is a complex number. (Contributed by
Glauco Siliprandi, 29-Jun-2017.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
|
Theorem | eluzle 9542 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
|
Theorem | eluz 9543 |
Membership in an upper set of integers. (Contributed by NM,
2-Oct-2005.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
|
Theorem | uzid 9544 |
Membership of the least member in an upper set of integers. (Contributed
by NM, 2-Sep-2005.)
|
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
|
Theorem | uzn0 9545 |
The upper integers are all nonempty. (Contributed by Mario Carneiro,
16-Jan-2014.)
|
⊢ (𝑀 ∈ ran ℤ≥ →
𝑀 ≠
∅) |
|
Theorem | uztrn 9546 |
Transitive law for sets of upper integers. (Contributed by NM,
20-Sep-2005.)
|
⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) |
|
Theorem | uztrn2 9547 |
Transitive law for sets of upper integers. (Contributed by Mario
Carneiro, 26-Dec-2013.)
|
⊢ 𝑍 = (ℤ≥‘𝐾)
⇒ ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
|
Theorem | uzneg 9548 |
Contraposition law for upper integers. (Contributed by NM,
28-Nov-2005.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → -𝑀 ∈
(ℤ≥‘-𝑁)) |
|
Theorem | uzssz 9549 |
An upper set of integers is a subset of all integers. (Contributed by
NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ (ℤ≥‘𝑀) ⊆
ℤ |
|
Theorem | uzss 9550 |
Subset relationship for two sets of upper integers. (Contributed by NM,
5-Sep-2005.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) →
(ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
|
Theorem | uztric 9551 |
Trichotomy of the ordering relation on integers, stated in terms of upper
integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro,
25-Jun-2013.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) |
|
Theorem | uz11 9552 |
The upper integers function is one-to-one. (Contributed by NM,
12-Dec-2005.)
|
⊢ (𝑀 ∈ ℤ →
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ↔ 𝑀 = 𝑁)) |
|
Theorem | eluzp1m1 9553 |
Membership in the next upper set of integers. (Contributed by NM,
12-Sep-2005.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
|
Theorem | eluzp1l 9554 |
Strict ordering implied by membership in the next upper set of integers.
(Contributed by NM, 12-Sep-2005.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑁) |
|
Theorem | eluzp1p1 9555 |
Membership in the next upper set of integers. (Contributed by NM,
5-Oct-2005.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
|
Theorem | eluzaddi 9556 |
Membership in a later upper set of integers. (Contributed by Paul
Chapman, 22-Nov-2007.)
|
⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈
ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
|
Theorem | eluzsubi 9557 |
Membership in an earlier upper set of integers. (Contributed by Paul
Chapman, 22-Nov-2007.)
|
⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈
ℤ ⇒ ⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈
(ℤ≥‘𝑀)) |
|
Theorem | eluzadd 9558 |
Membership in a later upper set of integers. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
|
Theorem | eluzsub 9559 |
Membership in an earlier upper set of integers. (Contributed by Jeff
Madsen, 2-Sep-2009.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈
(ℤ≥‘𝑀)) |
|
Theorem | uzm1 9560 |
Choices for an element of an upper interval of integers. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈
(ℤ≥‘𝑀))) |
|
Theorem | uznn0sub 9561 |
The nonnegative difference of integers is a nonnegative integer.
(Contributed by NM, 4-Sep-2005.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈
ℕ0) |
|
Theorem | uzin 9562 |
Intersection of two upper intervals of integers. (Contributed by Mario
Carneiro, 24-Dec-2013.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
|
Theorem | uzp1 9563 |
Choices for an element of an upper interval of integers. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈
(ℤ≥‘(𝑀 + 1)))) |
|
Theorem | nn0uz 9564 |
Nonnegative integers expressed as an upper set of integers. (Contributed
by NM, 2-Sep-2005.)
|
⊢ ℕ0 =
(ℤ≥‘0) |
|
Theorem | nnuz 9565 |
Positive integers expressed as an upper set of integers. (Contributed by
NM, 2-Sep-2005.)
|
⊢ ℕ =
(ℤ≥‘1) |
|
Theorem | elnnuz 9566 |
A positive integer expressed as a member of an upper set of integers.
(Contributed by NM, 6-Jun-2006.)
|
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
|
Theorem | elnn0uz 9567 |
A nonnegative integer expressed as a member an upper set of integers.
(Contributed by NM, 6-Jun-2006.)
|
⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈
(ℤ≥‘0)) |
|
Theorem | eluz2nn 9568 |
An integer is greater than or equal to 2 is a positive integer.
(Contributed by AV, 3-Nov-2018.)
|
⊢ (𝐴 ∈ (ℤ≥‘2)
→ 𝐴 ∈
ℕ) |
|
Theorem | eluz4eluz2 9569 |
An integer greater than or equal to 4 is an integer greater than or equal
to 2. (Contributed by AV, 30-May-2023.)
|
⊢ (𝑋 ∈ (ℤ≥‘4)
→ 𝑋 ∈
(ℤ≥‘2)) |
|
Theorem | eluz4nn 9570 |
An integer greater than or equal to 4 is a positive integer. (Contributed
by AV, 30-May-2023.)
|
⊢ (𝑋 ∈ (ℤ≥‘4)
→ 𝑋 ∈
ℕ) |
|
Theorem | eluzge2nn0 9571 |
If an integer is greater than or equal to 2, then it is a nonnegative
integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV,
3-Nov-2018.)
|
⊢ (𝑁 ∈ (ℤ≥‘2)
→ 𝑁 ∈
ℕ0) |
|
Theorem | eluz2n0 9572 |
An integer greater than or equal to 2 is not 0. (Contributed by AV,
25-May-2020.)
|
⊢ (𝑁 ∈ (ℤ≥‘2)
→ 𝑁 ≠
0) |
|
Theorem | uzuzle23 9573 |
An integer in the upper set of integers starting at 3 is element of the
upper set of integers starting at 2. (Contributed by Alexander van der
Vekens, 17-Sep-2018.)
|
⊢ (𝐴 ∈ (ℤ≥‘3)
→ 𝐴 ∈
(ℤ≥‘2)) |
|
Theorem | eluzge3nn 9574 |
If an integer is greater than 3, then it is a positive integer.
(Contributed by Alexander van der Vekens, 17-Sep-2018.)
|
⊢ (𝑁 ∈ (ℤ≥‘3)
→ 𝑁 ∈
ℕ) |
|
Theorem | uz3m2nn 9575 |
An integer greater than or equal to 3 decreased by 2 is a positive
integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
|
⊢ (𝑁 ∈ (ℤ≥‘3)
→ (𝑁 − 2)
∈ ℕ) |
|
Theorem | 1eluzge0 9576 |
1 is an integer greater than or equal to 0. (Contributed by Alexander van
der Vekens, 8-Jun-2018.)
|
⊢ 1 ∈
(ℤ≥‘0) |
|
Theorem | 2eluzge0 9577 |
2 is an integer greater than or equal to 0. (Contributed by Alexander van
der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
|
⊢ 2 ∈
(ℤ≥‘0) |
|
Theorem | 2eluzge1 9578 |
2 is an integer greater than or equal to 1. (Contributed by Alexander van
der Vekens, 8-Jun-2018.)
|
⊢ 2 ∈
(ℤ≥‘1) |
|
Theorem | uznnssnn 9579 |
The upper integers starting from a natural are a subset of the naturals.
(Contributed by Scott Fenton, 29-Jun-2013.)
|
⊢ (𝑁 ∈ ℕ →
(ℤ≥‘𝑁) ⊆ ℕ) |
|
Theorem | raluz 9580* |
Restricted universal quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
⊢ (𝑀 ∈ ℤ → (∀𝑛 ∈
(ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
|
Theorem | raluz2 9581* |
Restricted universal quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
|
Theorem | rexuz 9582* |
Restricted existential quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈
(ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
|
Theorem | rexuz2 9583* |
Restricted existential quantification in an upper set of integers.
(Contributed by NM, 9-Sep-2005.)
|
⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) |
|
Theorem | 2rexuz 9584* |
Double existential quantification in an upper set of integers.
(Contributed by NM, 3-Nov-2005.)
|
⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑)) |
|
Theorem | peano2uz 9585 |
Second Peano postulate for an upper set of integers. (Contributed by NM,
7-Sep-2005.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
|
Theorem | peano2uzs 9586 |
Second Peano postulate for an upper set of integers. (Contributed by
Mario Carneiro, 26-Dec-2013.)
|
⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ (𝑁 ∈ 𝑍 → (𝑁 + 1) ∈ 𝑍) |
|
Theorem | peano2uzr 9587 |
Reversed second Peano axiom for upper integers. (Contributed by NM,
2-Jan-2006.)
|
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
|
Theorem | uzaddcl 9588 |
Addition closure law for an upper set of integers. (Contributed by NM,
4-Jun-2006.)
|
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈
(ℤ≥‘𝑀)) |
|
Theorem | nn0pzuz 9589 |
The sum of a nonnegative integer and an integer is an integer greater than
or equal to that integer. (Contributed by Alexander van der Vekens,
3-Oct-2018.)
|
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈
(ℤ≥‘𝑍)) |
|
Theorem | uzind4 9590* |
Induction on the upper set of integers that starts at an integer 𝑀.
The first four hypotheses give us the substitution instances we need,
and the last two are the basis and the induction step. (Contributed by
NM, 7-Sep-2005.)
|
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
|
Theorem | uzind4ALT 9591* |
Induction on the upper set of integers that starts at an integer 𝑀.
The last four hypotheses give us the substitution instances we need; the
first two are the basis and the induction step. Either uzind4 9590 or
uzind4ALT 9591 may be used; see comment for nnind 8937. (Contributed by NM,
7-Sep-2005.) (New usage is discouraged.)
(Proof modification is discouraged.)
|
⊢ (𝑀 ∈ ℤ → 𝜓)
& ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) & ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
|
Theorem | uzind4s 9592* |
Induction on the upper set of integers that starts at an integer 𝑀,
using explicit substitution. The hypotheses are the basis and the
induction step. (Contributed by NM, 4-Nov-2005.)
|
⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
& ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) |
|
Theorem | uzind4s2 9593* |
Induction on the upper set of integers that starts at an integer 𝑀,
using explicit substitution. The hypotheses are the basis and the
induction step. Use this instead of uzind4s 9592 when 𝑗 and 𝑘 must
be distinct in [(𝑘 + 1) / 𝑗]𝜑. (Contributed by NM,
16-Nov-2005.)
|
⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑗]𝜑)
& ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ([𝑘 / 𝑗]𝜑 → [(𝑘 + 1) / 𝑗]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑗]𝜑) |
|
Theorem | uzind4i 9594* |
Induction on the upper integers that start at 𝑀. The first four
give us the substitution instances we need, and the last two are the
basis and the induction step. This is a stronger version of uzind4 9590
assuming that 𝜓 holds unconditionally. Notice that
𝑁
∈ (ℤ≥‘𝑀) implies that the lower bound 𝑀 is an
integer
(𝑀
∈ ℤ, see eluzel2 9535). (Contributed by NM, 4-Sep-2005.)
(Revised by AV, 13-Jul-2022.)
|
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
|
Theorem | indstr 9595* |
Strong Mathematical Induction for positive integers (inference schema).
(Contributed by NM, 17-Aug-2001.)
|
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ ℕ →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) |
|
Theorem | infrenegsupex 9596* |
The infimum of a set of reals 𝐴 is the negative of the supremum of
the negatives of its elements. (Contributed by Jim Kingdon,
14-Jan-2022.)
|
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ)
⇒ ⊢ (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) |
|
Theorem | supinfneg 9597* |
If a set of real numbers has a least upper bound, the set of the
negation of those numbers has a greatest lower bound. For a theorem
which is similar but only for the boundedness part, see ublbneg 9615.
(Contributed by Jim Kingdon, 15-Jan-2022.)
|
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ)
⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑧 < 𝑦))) |
|
Theorem | infsupneg 9598* |
If a set of real numbers has a greatest lower bound, the set of the
negation of those numbers has a least upper bound. To go in the other
direction see supinfneg 9597. (Contributed by Jim Kingdon,
15-Jan-2022.)
|
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ)
⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑦 < 𝑧))) |
|
Theorem | supminfex 9599* |
A supremum is the negation of the infimum of that set's image under
negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
|
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ)
⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |
|
Theorem | infregelbex 9600* |
Any lower bound of a set of real numbers with an infimum is less than or
equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.)
|
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) |