HomeHome Intuitionistic Logic Explorer
Theorem List (p. 96 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9501-9600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzleloe 9501 Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
 
Theoremznnnlt1 9502 An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.)
(𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1))
 
Theoremnnnle0 9503 A positive integer is not less than or equal to zero. (Contributed by AV, 13-May-2020.)
(𝐴 ∈ ℕ → ¬ 𝐴 ≤ 0)
 
Theoremzletr 9504 Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽𝐾𝐾𝐿) → 𝐽𝐿))
 
Theoremzrevaddcl 9505 Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.)
(𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ))
 
Theoremznnsub 9506 The positive difference of unequal integers is a positive integer. (Generalization of nnsub 9157.) (Contributed by NM, 11-May-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
 
Theoremnzadd 9507 The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.)
((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ))
 
Theoremzmulcl 9508 Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
 
Theoremzltp1le 9509 Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
 
Theoremzleltp1 9510 Integer ordering relation. (Contributed by NM, 10-May-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 < (𝑁 + 1)))
 
Theoremzlem1lt 9511 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
 
Theoremzltlem1 9512 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
 
Theoremzgt0ge1 9513 An integer greater than 0 is greater than or equal to 1. (Contributed by AV, 14-Oct-2018.)
(𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍))
 
Theoremnnleltp1 9514 Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵𝐴 < (𝐵 + 1)))
 
Theoremnnltp1le 9515 Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵))
 
Theoremnnaddm1cl 9516 Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ)
 
Theoremnn0ltp1le 9517 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
 
Theoremnn0leltp1 9518 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁𝑀 < (𝑁 + 1)))
 
Theoremnn0ltlem1 9519 Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
 
Theoremznn0sub 9520 The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 9521.) (Contributed by NM, 14-Jul-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
 
Theoremnn0sub 9521 Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
 
Theoremltsubnn0 9522 Subtracting a nonnegative integer from a nonnegative integer which is greater than the first one results in a nonnegative integer. (Contributed by Alexander van der Vekens, 6-Apr-2018.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐵 < 𝐴 → (𝐴𝐵) ∈ ℕ0))
 
Theoremnn0negleid 9523 A nonnegative integer is greater than or equal to its negative. (Contributed by AV, 13-Aug-2021.)
(𝐴 ∈ ℕ0 → -𝐴𝐴)
 
Theoremdifgtsumgt 9524 If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℝ) → (𝐶 < (𝐴𝐵) → 𝐶 < (𝐴 + 𝐵)))
 
Theoremnn0n0n1ge2 9525 A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
 
Theoremelz2 9526* Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
 
Theoremdfz2 9527 Alternate definition of the integers, based on elz2 9526. (Contributed by Mario Carneiro, 16-May-2014.)
ℤ = ( − “ (ℕ × ℕ))
 
Theoremnn0sub2 9528 Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁𝑀) ∈ ℕ0)
 
Theoremzapne 9529 Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁𝑀𝑁))
 
Theoremzdceq 9530 Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)
 
Theoremzdcle 9531 Integer is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
 
Theoremzdclt 9532 Integer < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵)
 
Theoremzltlen 9533 Integer 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8787 which is a similar result for real numbers. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremnn0n0n1ge2b 9534 A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
(𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
 
Theoremnn0lt10b 9535 A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
 
Theoremnn0lt2 9536 A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))
 
Theoremnn0le2is012 9537 A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.)
((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
 
Theoremnn0lem1lt 9538 Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
 
Theoremnnlem1lt 9539 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
 
Theoremnnltlem1 9540 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
 
Theoremnnm1ge0 9541 A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.)
(𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1))
 
Theoremnn0ge0div 9542 Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿))
 
Theoremzdiv 9543* Two ways to express "𝑀 divides 𝑁. (Contributed by NM, 3-Oct-2008.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
 
Theoremzdivadd 9544 Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it divides 𝐴 + 𝐵. (Contributed by NM, 3-Oct-2008.)
(((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ)
 
Theoremzdivmul 9545 Property of divisibility: if 𝐷 divides 𝐴 then it divides 𝐵 · 𝐴. (Contributed by NM, 3-Oct-2008.)
(((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ)
 
Theoremzextle 9546* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)
 
Theoremzextlt 9547* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀𝑘 < 𝑁)) → 𝑀 = 𝑁)
 
Theoremrecnz 9548 The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ)
 
Theorembtwnnz 9549 A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ)
 
Theoremgtndiv 9550 A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ)
 
Theoremhalfnz 9551 One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
¬ (1 / 2) ∈ ℤ
 
Theorem3halfnz 9552 Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
¬ (3 / 2) ∈ ℤ
 
Theoremsuprzclex 9553* The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℤ)       (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
 
Theoremprime 9554* Two ways to express "𝐴 is a prime number (or 1)". (Contributed by NM, 4-May-2005.)
(𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
 
Theoremmsqznn 9555 The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.)
((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ)
 
Theoremzneo 9556 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1))
 
Theoremnneoor 9557 A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
 
Theoremnneo 9558 A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
 
Theoremnneoi 9559 A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.)
𝑁 ∈ ℕ       ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ)
 
Theoremzeo 9560 An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
(𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
 
Theoremzeo2 9561 An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
(𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
 
Theorempeano2uz2 9562* Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
 
Theorempeano5uzti 9563* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
(𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
 
Theorempeano5uzi 9564* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
𝑁 ∈ ℤ       ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)
 
Theoremdfuzi 9565* An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 9120 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
𝑁 ∈ ℤ       {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
 
Theoremuzind 9566* Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
 
Theoremuzind2 9567* Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.)
(𝑗 = (𝑀 + 1) → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏)
 
Theoremuzind3 9568* Induction on the upper integers that start at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑚 → (𝜑𝜒))    &   (𝑗 = (𝑚 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}) → 𝜏)
 
Theoremnn0ind 9569* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ0 → (𝜒𝜃))       (𝐴 ∈ ℕ0𝜏)
 
Theoremfzind 9570* Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑥 = 𝑀 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐾 → (𝜑𝜏))    &   ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)    &   (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))       (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
 
Theoremfnn0ind 9571* Induction on the integers from 0 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐾 → (𝜑𝜏))    &   (𝑁 ∈ ℕ0𝜓)    &   ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))       ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
 
Theoremnn0ind-raph 9572* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ0 → (𝜒𝜃))       (𝐴 ∈ ℕ0𝜏)
 
Theoremzindd 9573* Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜏))    &   (𝑥 = -𝑦 → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜂))    &   (𝜁𝜓)    &   (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))    &   (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))       (𝜁 → (𝐴 ∈ ℤ → 𝜂))
 
Theorembtwnz 9574* Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
(𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦))
 
Theoremnn0zd 9575 A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℤ)
 
Theoremnnzd 9576 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℤ)
 
Theoremzred 9577 An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑𝐴 ∈ ℝ)
 
Theoremzcnd 9578 An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑𝐴 ∈ ℂ)
 
Theoremznegcld 9579 Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑 → -𝐴 ∈ ℤ)
 
Theorempeano2zd 9580 Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑 → (𝐴 + 1) ∈ ℤ)
 
Theoremzaddcld 9581 Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
 
Theoremzsubcld 9582 Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴𝐵) ∈ ℤ)
 
Theoremzmulcld 9583 Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴 · 𝐵) ∈ ℤ)
 
Theoremzadd2cl 9584 Increasing an integer by 2 results in an integer. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
(𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ)
 
Theorembtwnapz 9585 A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵 < (𝐴 + 1))       (𝜑𝐵 # 𝐶)
 
4.4.10  Decimal arithmetic
 
Syntaxcdc 9586 Constant used for decimal constructor.
class 𝐴𝐵
 
Definitiondf-dec 9587 Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example, (1000 + 2000) = 3000 1kp2ke3k 16112. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.)
𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
 
Theorem9p1e10 9588 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
(9 + 1) = 10
 
Theoremdfdec10 9589 Version of the definition of the "decimal constructor" using 10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
𝐴𝐵 = ((10 · 𝐴) + 𝐵)
 
Theoremdeceq1 9590 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
 
Theoremdeceq2 9591 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
 
Theoremdeceq1i 9592 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵       𝐴𝐶 = 𝐵𝐶
 
Theoremdeceq2i 9593 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵       𝐶𝐴 = 𝐶𝐵
 
Theoremdeceq12i 9594 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵    &   𝐶 = 𝐷       𝐴𝐶 = 𝐵𝐷
 
Theoremnumnncl 9595 Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ       ((𝑇 · 𝐴) + 𝐵) ∈ ℕ
 
Theoremnum0u 9596 Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0       (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0)
 
Theoremnum0h 9597 Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0       𝐴 = ((𝑇 · 0) + 𝐴)
 
Theoremnumcl 9598 Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
 
Theoremnumsuc 9599 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   (𝐵 + 1) = 𝐶    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)       (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶)
 
Theoremdeccl 9600 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       𝐴𝐵 ∈ ℕ0
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >