Theorem List for Intuitionistic Logic Explorer - 9501-9600 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | decma 9501 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (no carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decmac 9502 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (with carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decma2c 9503 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplier 𝑃 (with carry). (Contributed by Mario
Carneiro,
18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
& ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decadd 9504 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ (𝐴 + 𝐶) = 𝐸
& ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
|
Theorem | decaddc 9505 |
Add two numerals 𝑀 and 𝑁 (with carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ 𝐹 ∈ ℕ0 & ⊢ (𝐵 + 𝐷) = ;1𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
|
Theorem | decaddc2 9506 |
Add two numerals 𝑀 and 𝑁 (with carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑁 = ;𝐶𝐷
& ⊢ ((𝐴 + 𝐶) + 1) = 𝐸
& ⊢ (𝐵 + 𝐷) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸0 |
|
Theorem | decrmanc 9507 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (no carry). (Contributed by AV,
16-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑃 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decrmac 9508 |
Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed
multiplicand 𝑃 (with carry). (Contributed by AV,
16-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈
ℕ0
& ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸
& ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
|
Theorem | decaddm10 9509 |
The sum of two multiples of 10 is a multiple of 10. (Contributed by AV,
30-Jul-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ (;𝐴0 + ;𝐵0) = ;(𝐴 + 𝐵)0 |
|
Theorem | decaddi 9510 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐵 + 𝑁) = 𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
|
Theorem | decaddci 9511 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ 𝐶 ∈ ℕ0 & ⊢ (𝐵 + 𝑁) = ;1𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
|
Theorem | decaddci2 9512 |
Add two numerals 𝑀 and 𝑁 (no carry).
(Contributed by Mario
Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ (𝐵 + 𝑁) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷0 |
|
Theorem | decsubi 9513 |
Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no
underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV,
6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵
& ⊢ (𝐴 + 1) = 𝐷
& ⊢ (𝐵 − 𝑁) = 𝐶 ⇒ ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
|
Theorem | decmul1 9514 |
The product of a numeral with a number (no carry). (Contributed by
AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐶
& ⊢ (𝐵 · 𝑃) = 𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
|
Theorem | decmul1c 9515 |
The product of a numeral with a number (with carry). (Contributed by
Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶
& ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
|
Theorem | decmul2c 9516 |
The product of a numeral with a number (with carry). (Contributed by
Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
|
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵
& ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈
ℕ0
& ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶
& ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 ⇒ ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 |
|
Theorem | decmulnc 9517 |
The product of a numeral with a number (no carry). (Contributed by AV,
15-Jun-2021.)
|
⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ (𝑁 · ;𝐴𝐵) = ;(𝑁 · 𝐴)(𝑁 · 𝐵) |
|
Theorem | 11multnc 9518 |
The product of 11 (as numeral) with a number (no carry). (Contributed
by AV, 15-Jun-2021.)
|
⊢ 𝑁 ∈
ℕ0 ⇒ ⊢ (𝑁 · ;11) = ;𝑁𝑁 |
|
Theorem | decmul10add 9519 |
A multiplication of a number and a numeral expressed as addition with
first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.)
(Revised by AV, 6-Sep-2021.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐸 = (𝑀 · 𝐴)
& ⊢ 𝐹 = (𝑀 · 𝐵) ⇒ ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) |
|
Theorem | 6p5lem 9520 |
Lemma for 6p5e11 9523 and related theorems. (Contributed by Mario
Carneiro, 19-Apr-2015.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐷 ∈
ℕ0
& ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐵 = (𝐷 + 1) & ⊢ 𝐶 = (𝐸 + 1) & ⊢ (𝐴 + 𝐷) = ;1𝐸 ⇒ ⊢ (𝐴 + 𝐵) = ;1𝐶 |
|
Theorem | 5p5e10 9521 |
5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (5 + 5) = ;10 |
|
Theorem | 6p4e10 9522 |
6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (6 + 4) = ;10 |
|
Theorem | 6p5e11 9523 |
6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (6 + 5) = ;11 |
|
Theorem | 6p6e12 9524 |
6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (6 + 6) = ;12 |
|
Theorem | 7p3e10 9525 |
7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (7 + 3) = ;10 |
|
Theorem | 7p4e11 9526 |
7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (7 + 4) = ;11 |
|
Theorem | 7p5e12 9527 |
7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 + 5) = ;12 |
|
Theorem | 7p6e13 9528 |
7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 + 6) = ;13 |
|
Theorem | 7p7e14 9529 |
7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 + 7) = ;14 |
|
Theorem | 8p2e10 9530 |
8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu,
7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
|
⊢ (8 + 2) = ;10 |
|
Theorem | 8p3e11 9531 |
8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (8 + 3) = ;11 |
|
Theorem | 8p4e12 9532 |
8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 + 4) = ;12 |
|
Theorem | 8p5e13 9533 |
8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 + 5) = ;13 |
|
Theorem | 8p6e14 9534 |
8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 + 6) = ;14 |
|
Theorem | 8p7e15 9535 |
8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 + 7) = ;15 |
|
Theorem | 8p8e16 9536 |
8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 + 8) = ;16 |
|
Theorem | 9p2e11 9537 |
9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (9 + 2) = ;11 |
|
Theorem | 9p3e12 9538 |
9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 3) = ;12 |
|
Theorem | 9p4e13 9539 |
9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 4) = ;13 |
|
Theorem | 9p5e14 9540 |
9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 5) = ;14 |
|
Theorem | 9p6e15 9541 |
9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 6) = ;15 |
|
Theorem | 9p7e16 9542 |
9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 7) = ;16 |
|
Theorem | 9p8e17 9543 |
9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 8) = ;17 |
|
Theorem | 9p9e18 9544 |
9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 + 9) = ;18 |
|
Theorem | 10p10e20 9545 |
10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by
AV, 6-Sep-2021.)
|
⊢ (;10 + ;10) = ;20 |
|
Theorem | 10m1e9 9546 |
10 - 1 = 9. (Contributed by AV, 6-Sep-2021.)
|
⊢ (;10 − 1) = 9 |
|
Theorem | 4t3lem 9547 |
Lemma for 4t3e12 9548 and related theorems. (Contributed by Mario
Carneiro, 19-Apr-2015.)
|
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0
& ⊢ 𝐶 = (𝐵 + 1) & ⊢ (𝐴 · 𝐵) = 𝐷
& ⊢ (𝐷 + 𝐴) = 𝐸 ⇒ ⊢ (𝐴 · 𝐶) = 𝐸 |
|
Theorem | 4t3e12 9548 |
4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (4 · 3) = ;12 |
|
Theorem | 4t4e16 9549 |
4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (4 · 4) = ;16 |
|
Theorem | 5t2e10 9550 |
5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV,
4-Sep-2021.)
|
⊢ (5 · 2) = ;10 |
|
Theorem | 5t3e15 9551 |
5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (5 · 3) = ;15 |
|
Theorem | 5t4e20 9552 |
5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (5 · 4) = ;20 |
|
Theorem | 5t5e25 9553 |
5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (5 · 5) = ;25 |
|
Theorem | 6t2e12 9554 |
6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (6 · 2) = ;12 |
|
Theorem | 6t3e18 9555 |
6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (6 · 3) = ;18 |
|
Theorem | 6t4e24 9556 |
6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (6 · 4) = ;24 |
|
Theorem | 6t5e30 9557 |
6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (6 · 5) = ;30 |
|
Theorem | 6t6e36 9558 |
6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (6 · 6) = ;36 |
|
Theorem | 7t2e14 9559 |
7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 2) = ;14 |
|
Theorem | 7t3e21 9560 |
7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 3) = ;21 |
|
Theorem | 7t4e28 9561 |
7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 4) = ;28 |
|
Theorem | 7t5e35 9562 |
7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 5) = ;35 |
|
Theorem | 7t6e42 9563 |
7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 6) = ;42 |
|
Theorem | 7t7e49 9564 |
7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (7 · 7) = ;49 |
|
Theorem | 8t2e16 9565 |
8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 2) = ;16 |
|
Theorem | 8t3e24 9566 |
8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 3) = ;24 |
|
Theorem | 8t4e32 9567 |
8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 4) = ;32 |
|
Theorem | 8t5e40 9568 |
8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (8 · 5) = ;40 |
|
Theorem | 8t6e48 9569 |
8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
⊢ (8 · 6) = ;48 |
|
Theorem | 8t7e56 9570 |
8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 7) = ;56 |
|
Theorem | 8t8e64 9571 |
8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (8 · 8) = ;64 |
|
Theorem | 9t2e18 9572 |
9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 2) = ;18 |
|
Theorem | 9t3e27 9573 |
9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 3) = ;27 |
|
Theorem | 9t4e36 9574 |
9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 4) = ;36 |
|
Theorem | 9t5e45 9575 |
9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 5) = ;45 |
|
Theorem | 9t6e54 9576 |
9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 6) = ;54 |
|
Theorem | 9t7e63 9577 |
9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 7) = ;63 |
|
Theorem | 9t8e72 9578 |
9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 8) = ;72 |
|
Theorem | 9t9e81 9579 |
9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
⊢ (9 · 9) = ;81 |
|
Theorem | 9t11e99 9580 |
9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV,
6-Sep-2021.)
|
⊢ (9 · ;11) = ;99 |
|
Theorem | 9lt10 9581 |
9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
⊢ 9 < ;10 |
|
Theorem | 8lt10 9582 |
8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised
by AV, 8-Sep-2021.)
|
⊢ 8 < ;10 |
|
Theorem | 7lt10 9583 |
7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 7 < ;10 |
|
Theorem | 6lt10 9584 |
6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 6 < ;10 |
|
Theorem | 5lt10 9585 |
5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 5 < ;10 |
|
Theorem | 4lt10 9586 |
4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 4 < ;10 |
|
Theorem | 3lt10 9587 |
3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 3 < ;10 |
|
Theorem | 2lt10 9588 |
2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.)
(Revised by AV, 8-Sep-2021.)
|
⊢ 2 < ;10 |
|
Theorem | 1lt10 9589 |
1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario
Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
|
⊢ 1 < ;10 |
|
Theorem | decbin0 9590 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
|
Theorem | decbin2 9591 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
|
Theorem | decbin3 9592 |
Decompose base 4 into base 2. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) |
|
Theorem | halfthird 9593 |
Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.)
|
⊢ ((1 / 2) − (1 / 3)) = (1 /
6) |
|
Theorem | 5recm6rec 9594 |
One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
|
⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
|
4.4.11 Upper sets of integers
|
|
Syntax | cuz 9595 |
Extend class notation with the upper integer function.
Read "ℤ≥‘𝑀 " as "the set of integers
greater than or equal to
𝑀".
|
class ℤ≥ |
|
Definition | df-uz 9596* |
Define a function whose value at 𝑗 is the semi-infinite set of
contiguous integers starting at 𝑗, which we will also call the
upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set
of integers greater than or equal to 𝑀". See uzval 9597 for its
value, uzssz 9615 for its relationship to ℤ, nnuz 9631 and nn0uz 9630 for
its relationships to ℕ and ℕ0, and eluz1 9599 and eluz2 9601 for
its membership relations. (Contributed by NM, 5-Sep-2005.)
|
⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
|
Theorem | uzval 9597* |
The value of the upper integers function. (Contributed by NM,
5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ (𝑁 ∈ ℤ →
(ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
|
Theorem | uzf 9598 |
The domain and codomain of the upper integers function. (Contributed by
Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢
ℤ≥:ℤ⟶𝒫
ℤ |
|
Theorem | eluz1 9599 |
Membership in the upper set of integers starting at 𝑀.
(Contributed by NM, 5-Sep-2005.)
|
⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
|
Theorem | eluzel2 9600 |
Implication of membership in an upper set of integers. (Contributed by
NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |