Theorem List for Intuitionistic Logic Explorer - 9501-9600 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | zleloe 9501 |
Integer 'Less than or equal to' expressed in terms of 'less than' or
'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| |
| Theorem | znnnlt1 9502 |
An integer is not a positive integer iff it is less than one.
(Contributed by NM, 13-Jul-2005.)
|
| ⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1)) |
| |
| Theorem | nnnle0 9503 |
A positive integer is not less than or equal to zero. (Contributed by AV,
13-May-2020.)
|
| ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 ≤ 0) |
| |
| Theorem | zletr 9504 |
Transitive law of ordering for integers. (Contributed by Alexander van
der Vekens, 3-Apr-2018.)
|
| ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) |
| |
| Theorem | zrevaddcl 9505 |
Reverse closure law for addition of integers. (Contributed by NM,
11-May-2004.)
|
| ⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ)) |
| |
| Theorem | znnsub 9506 |
The positive difference of unequal integers is a positive integer.
(Generalization of nnsub 9157.) (Contributed by NM, 11-May-2004.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) |
| |
| Theorem | nzadd 9507 |
The sum of a real number not being an integer and an integer is not an
integer. Note that "not being an integer" in this case means
"the
negation of is an integer" rather than "is apart from any
integer" (given
excluded middle, those two would be equivalent). (Contributed by AV,
19-Jul-2021.)
|
| ⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧
𝐵 ∈ ℤ) →
(𝐴 + 𝐵) ∈ (ℝ ∖
ℤ)) |
| |
| Theorem | zmulcl 9508 |
Closure of multiplication of integers. (Contributed by NM,
30-Jul-2004.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
| |
| Theorem | zltp1le 9509 |
Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof
shortened by Mario Carneiro, 16-May-2014.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| |
| Theorem | zleltp1 9510 |
Integer ordering relation. (Contributed by NM, 10-May-2004.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) |
| |
| Theorem | zlem1lt 9511 |
Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
| |
| Theorem | zltlem1 9512 |
Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| |
| Theorem | zgt0ge1 9513 |
An integer greater than 0 is greater than or equal to
1.
(Contributed by AV, 14-Oct-2018.)
|
| ⊢ (𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍)) |
| |
| Theorem | nnleltp1 9514 |
Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.)
(Proof shortened by Mario Carneiro, 16-May-2014.)
|
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ≤ 𝐵 ↔ 𝐴 < (𝐵 + 1))) |
| |
| Theorem | nnltp1le 9515 |
Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.)
|
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) |
| |
| Theorem | nnaddm1cl 9516 |
Closure of addition of positive integers minus one. (Contributed by NM,
6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.)
|
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈
ℕ) |
| |
| Theorem | nn0ltp1le 9517 |
Nonnegative integer ordering relation. (Contributed by Raph Levien,
10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.)
|
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
→ (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| |
| Theorem | nn0leltp1 9518 |
Nonnegative integer ordering relation. (Contributed by Raph Levien,
10-Apr-2004.)
|
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
→ (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) |
| |
| Theorem | nn0ltlem1 9519 |
Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.)
(Proof shortened by Mario Carneiro, 16-May-2014.)
|
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
→ (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| |
| Theorem | znn0sub 9520 |
The nonnegative difference of integers is a nonnegative integer.
(Generalization of nn0sub 9521.) (Contributed by NM, 14-Jul-2005.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈
ℕ0)) |
| |
| Theorem | nn0sub 9521 |
Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.)
|
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
→ (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈
ℕ0)) |
| |
| Theorem | ltsubnn0 9522 |
Subtracting a nonnegative integer from a nonnegative integer which is
greater than the first one results in a nonnegative integer. (Contributed
by Alexander van der Vekens, 6-Apr-2018.)
|
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)
→ (𝐵 < 𝐴 → (𝐴 − 𝐵) ∈
ℕ0)) |
| |
| Theorem | nn0negleid 9523 |
A nonnegative integer is greater than or equal to its negative.
(Contributed by AV, 13-Aug-2021.)
|
| ⊢ (𝐴 ∈ ℕ0 → -𝐴 ≤ 𝐴) |
| |
| Theorem | difgtsumgt 9524 |
If the difference of a real number and a nonnegative integer is greater
than another real number, the sum of the real number and the nonnegative
integer is also greater than the other real number. (Contributed by AV,
13-Aug-2021.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) → 𝐶 < (𝐴 + 𝐵))) |
| |
| Theorem | nn0n0n1ge2 9525 |
A nonnegative integer which is neither 0 nor 1 is greater than or equal to
2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
| |
| Theorem | elz2 9526* |
Membership in the set of integers. Commonly used in constructions of
the integers as equivalence classes under subtraction of the positive
integers. (Contributed by Mario Carneiro, 16-May-2014.)
|
| ⊢ (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) |
| |
| Theorem | dfz2 9527 |
Alternate definition of the integers, based on elz2 9526.
(Contributed by
Mario Carneiro, 16-May-2014.)
|
| ⊢ ℤ = ( − “ (ℕ ×
ℕ)) |
| |
| Theorem | nn0sub2 9528 |
Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.)
|
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑀 ≤ 𝑁) → (𝑁 − 𝑀) ∈
ℕ0) |
| |
| Theorem | zapne 9529 |
Apartness is equivalent to not equal for integers. (Contributed by Jim
Kingdon, 14-Mar-2020.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ 𝑀 ≠ 𝑁)) |
| |
| Theorem | zdceq 9530 |
Equality of integers is decidable. (Contributed by Jim Kingdon,
14-Mar-2020.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
DECID 𝐴 =
𝐵) |
| |
| Theorem | zdcle 9531 |
Integer ≤ is decidable. (Contributed by Jim
Kingdon, 7-Apr-2020.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
DECID 𝐴
≤ 𝐵) |
| |
| Theorem | zdclt 9532 |
Integer < is decidable. (Contributed by Jim
Kingdon, 1-Jun-2020.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
DECID 𝐴
< 𝐵) |
| |
| Theorem | zltlen 9533 |
Integer 'Less than' expressed in terms of 'less than or equal to'. Also
see ltleap 8787 which is a similar result for real numbers.
(Contributed by
Jim Kingdon, 14-Mar-2020.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
| |
| Theorem | nn0n0n1ge2b 9534 |
A nonnegative integer is neither 0 nor 1 if and only if it is greater than
or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
|
| ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| |
| Theorem | nn0lt10b 9535 |
A nonnegative integer less than 1 is 0. (Contributed by Paul
Chapman, 22-Jun-2011.)
|
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) |
| |
| Theorem | nn0lt2 9536 |
A nonnegative integer less than 2 must be 0 or 1. (Contributed by
Alexander van der Vekens, 16-Sep-2018.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| |
| Theorem | nn0le2is012 9537 |
A nonnegative integer which is less than or equal to 2 is either 0 or 1 or
2. (Contributed by AV, 16-Mar-2019.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
| |
| Theorem | nn0lem1lt 9538 |
Nonnegative integer ordering relation. (Contributed by NM,
21-Jun-2005.)
|
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
→ (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
| |
| Theorem | nnlem1lt 9539 |
Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
|
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
| |
| Theorem | nnltlem1 9540 |
Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
|
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| |
| Theorem | nnm1ge0 9541 |
A positive integer decreased by 1 is greater than or equal to 0.
(Contributed by AV, 30-Oct-2018.)
|
| ⊢ (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1)) |
| |
| Theorem | nn0ge0div 9542 |
Division of a nonnegative integer by a positive number is not negative.
(Contributed by Alexander van der Vekens, 14-Apr-2018.)
|
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 0 ≤
(𝐾 / 𝐿)) |
| |
| Theorem | zdiv 9543* |
Two ways to express "𝑀 divides 𝑁. (Contributed by NM,
3-Oct-2008.)
|
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| |
| Theorem | zdivadd 9544 |
Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it
divides
𝐴 +
𝐵. (Contributed by
NM, 3-Oct-2008.)
|
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ) |
| |
| Theorem | zdivmul 9545 |
Property of divisibility: if 𝐷 divides 𝐴 then it divides
𝐵
· 𝐴.
(Contributed by NM, 3-Oct-2008.)
|
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) |
| |
| Theorem | zextle 9546* |
An extensionality-like property for integer ordering. (Contributed by
NM, 29-Oct-2005.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) |
| |
| Theorem | zextlt 9547* |
An extensionality-like property for integer ordering. (Contributed by
NM, 29-Oct-2005.)
|
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) |
| |
| Theorem | recnz 9548 |
The reciprocal of a number greater than 1 is not an integer. (Contributed
by NM, 3-May-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈
ℤ) |
| |
| Theorem | btwnnz 9549 |
A number between an integer and its successor is not an integer.
(Contributed by NM, 3-May-2005.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ) |
| |
| Theorem | gtndiv 9550 |
A larger number does not divide a smaller positive integer. (Contributed
by NM, 3-May-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
| |
| Theorem | halfnz 9551 |
One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
|
| ⊢ ¬ (1 / 2) ∈
ℤ |
| |
| Theorem | 3halfnz 9552 |
Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
|
| ⊢ ¬ (3 / 2) ∈
ℤ |
| |
| Theorem | suprzclex 9553* |
The supremum of a set of integers is an element of the set.
(Contributed by Jim Kingdon, 20-Dec-2021.)
|
| ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) & ⊢ (𝜑 → 𝐴 ⊆ ℤ)
⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| |
| Theorem | prime 9554* |
Two ways to express "𝐴 is a prime number (or 1)".
(Contributed by
NM, 4-May-2005.)
|
| ⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
| |
| Theorem | msqznn 9555 |
The square of a nonzero integer is a positive integer. (Contributed by
NM, 2-Aug-2004.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ) |
| |
| Theorem | zneo 9556 |
No even integer equals an odd integer (i.e. no integer can be both even
and odd). Exercise 10(a) of [Apostol] p.
28. (Contributed by NM,
31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) |
| |
| Theorem | nneoor 9557 |
A positive integer is even or odd. (Contributed by Jim Kingdon,
15-Mar-2020.)
|
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈
ℕ)) |
| |
| Theorem | nneo 9558 |
A positive integer is even or odd but not both. (Contributed by NM,
1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
|
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈
ℕ)) |
| |
| Theorem | nneoi 9559 |
A positive integer is even or odd but not both. (Contributed by NM,
20-Aug-2001.)
|
| ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈
ℕ) |
| |
| Theorem | zeo 9560 |
An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
|
| ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈
ℤ)) |
| |
| Theorem | zeo2 9561 |
An integer is even or odd but not both. (Contributed by Mario Carneiro,
12-Sep-2015.)
|
| ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈
ℤ)) |
| |
| Theorem | peano2uz2 9562* |
Second Peano postulate for upper integers. (Contributed by NM,
3-Oct-2004.)
|
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
| |
| Theorem | peano5uzti 9563* |
Peano's inductive postulate for upper integers. (Contributed by NM,
6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
|
| ⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴)) |
| |
| Theorem | peano5uzi 9564* |
Peano's inductive postulate for upper integers. (Contributed by NM,
6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
|
| ⊢ 𝑁 ∈ ℤ
⇒ ⊢ ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴) |
| |
| Theorem | dfuzi 9565* |
An expression for the upper integers that start at 𝑁 that is
analogous to dfnn2 9120 for positive integers. (Contributed by NM,
6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
|
| ⊢ 𝑁 ∈ ℤ
⇒ ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| |
| Theorem | uzind 9566* |
Induction on the upper integers that start at 𝑀. The first four
hypotheses give us the substitution instances we need; the last two are
the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
|
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) |
| |
| Theorem | uzind2 9567* |
Induction on the upper integers that start after an integer 𝑀.
The first four hypotheses give us the substitution instances we need;
the last two are the basis and the induction step. (Contributed by NM,
25-Jul-2005.)
|
| ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
| |
| Theorem | uzind3 9568* |
Induction on the upper integers that start at an integer 𝑀. The
first four hypotheses give us the substitution instances we need, and
the last two are the basis and the induction step. (Contributed by NM,
26-Jul-2005.)
|
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) |
| |
| Theorem | nn0ind 9569* |
Principle of Mathematical Induction (inference schema) on nonnegative
integers. The first four hypotheses give us the substitution instances
we need; the last two are the basis and the induction step.
(Contributed by NM, 13-May-2004.)
|
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0
→ (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| |
| Theorem | fzind 9570* |
Induction on the integers from 𝑀 to 𝑁 inclusive . The first
four hypotheses give us the substitution instances we need; the last two
are the basis and the induction step. (Contributed by Paul Chapman,
31-Mar-2011.)
|
| ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓)
& ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) |
| |
| Theorem | fnn0ind 9571* |
Induction on the integers from 0 to 𝑁
inclusive . The first
four hypotheses give us the substitution instances we need; the last two
are the basis and the induction step. (Contributed by Paul Chapman,
31-Mar-2011.)
|
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ ℕ0
→ 𝜓) & ⊢ ((𝑁 ∈ ℕ0
∧ 𝑦 ∈
ℕ0 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0
∧ 𝐾 ≤ 𝑁) → 𝜏) |
| |
| Theorem | nn0ind-raph 9572* |
Principle of Mathematical Induction (inference schema) on nonnegative
integers. The first four hypotheses give us the substitution instances
we need; the last two are the basis and the induction step. Raph Levien
remarks: "This seems a bit painful. I wonder if an explicit
substitution version would be easier." (Contributed by Raph
Levien,
10-Apr-2004.)
|
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0
→ (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) |
| |
| Theorem | zindd 9573* |
Principle of Mathematical Induction on all integers, deduction version.
The first five hypotheses give the substitutions; the last three are the
basis, the induction, and the extension to negative numbers.
(Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario
Carneiro, 4-Jan-2017.)
|
| ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ (𝜁 → 𝜓)
& ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) & ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) ⇒ ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
| |
| Theorem | btwnz 9574* |
Any real number can be sandwiched between two integers. Exercise 2 of
[Apostol] p. 28. (Contributed by NM,
10-Nov-2004.)
|
| ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
| |
| Theorem | nn0zd 9575 |
A positive integer is an integer. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈
ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| |
| Theorem | nnzd 9576 |
A nonnegative integer is an integer. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℕ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| |
| Theorem | zred 9577 |
An integer is a real number. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| |
| Theorem | zcnd 9578 |
An integer is a complex number. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| |
| Theorem | znegcld 9579 |
Closure law for negative integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → -𝐴 ∈ ℤ) |
| |
| Theorem | peano2zd 9580 |
Deduction from second Peano postulate generalized to integers.
(Contributed by Mario Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
| |
| Theorem | zaddcld 9581 |
Closure of addition of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
| |
| Theorem | zsubcld 9582 |
Closure of subtraction of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
| |
| Theorem | zmulcld 9583 |
Closure of multiplication of integers. (Contributed by Mario Carneiro,
28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) |
| |
| Theorem | zadd2cl 9584 |
Increasing an integer by 2 results in an integer. (Contributed by
Alexander van der Vekens, 16-Sep-2018.)
|
| ⊢ (𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ) |
| |
| Theorem | btwnapz 9585 |
A number between an integer and its successor is apart from any integer.
(Contributed by Jim Kingdon, 6-Jan-2023.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) ⇒ ⊢ (𝜑 → 𝐵 # 𝐶) |
| |
| 4.4.10 Decimal arithmetic
|
| |
| Syntax | cdc 9586 |
Constant used for decimal constructor.
|
| class ;𝐴𝐵 |
| |
| Definition | df-dec 9587 |
Define the "decimal constructor", which is used to build up
"decimal
integers" or "numeric terms" in base 10. For example,
(;;;1000 + ;;;2000) = ;;;3000 1kp2ke3k 16112.
(Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV,
1-Aug-2021.)
|
| ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) |
| |
| Theorem | 9p1e10 9588 |
9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by
Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
|
| ⊢ (9 + 1) = ;10 |
| |
| Theorem | dfdec10 9589 |
Version of the definition of the "decimal constructor" using ;10
instead of the symbol 10. Of course, this statement cannot be used as
definition, because it uses the "decimal constructor".
(Contributed by
AV, 1-Aug-2021.)
|
| ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) |
| |
| Theorem | deceq1 9590 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
| |
| Theorem | deceq2 9591 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
|
| ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
| |
| Theorem | deceq1i 9592 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
| |
| Theorem | deceq2i 9593 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐶𝐴 = ;𝐶𝐵 |
| |
| Theorem | deceq12i 9594 |
Equality theorem for the decimal constructor. (Contributed by Mario
Carneiro, 17-Apr-2015.)
|
| ⊢ 𝐴 = 𝐵
& ⊢ 𝐶 = 𝐷 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
| |
| Theorem | numnncl 9595 |
Closure for a numeral (with units place). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ
⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ |
| |
| Theorem | num0u 9596 |
Add a zero in the units place. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0) |
| |
| Theorem | num0h 9597 |
Add a zero in the higher places. (Contributed by Mario Carneiro,
18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0 ⇒ ⊢ 𝐴 = ((𝑇 · 0) + 𝐴) |
| |
| Theorem | numcl 9598 |
Closure for a decimal integer (with units place). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈
ℕ0 |
| |
| Theorem | numsuc 9599 |
The successor of a decimal integer (no carry). (Contributed by Mario
Carneiro, 18-Feb-2014.)
|
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈
ℕ0
& ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 + 1) = 𝐶
& ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) |
| |
| Theorem | deccl 9600 |
Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
(Revised by AV, 6-Sep-2021.)
|
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈
ℕ0 ⇒ ⊢ ;𝐴𝐵 ∈
ℕ0 |