| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzf | GIF version | ||
| Description: The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzf | ⊢ ℤ≥:ℤ⟶𝒫 ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 | . . . 4 ⊢ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ⊆ ℤ | |
| 2 | zex 9455 | . . . . 5 ⊢ ℤ ∈ V | |
| 3 | 2 | elpw2 4241 | . . . 4 ⊢ ({𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ ↔ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ⊆ ℤ) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ |
| 5 | 4 | rgenw 2585 | . 2 ⊢ ∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ |
| 6 | df-uz 9723 | . . 3 ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | |
| 7 | 6 | fmpt 5785 | . 2 ⊢ (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ ↔ ℤ≥:ℤ⟶𝒫 ℤ) |
| 8 | 5, 7 | mpbi 145 | 1 ⊢ ℤ≥:ℤ⟶𝒫 ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∀wral 2508 {crab 2512 ⊆ wss 3197 𝒫 cpw 3649 class class class wbr 4083 ⟶wf 5314 ≤ cle 8182 ℤcz 9446 ℤ≥cuz 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-neg 8320 df-z 9447 df-uz 9723 |
| This theorem is referenced by: eluzel2 9727 uzn0 9738 uzin2 11498 rexanuz 11499 climmpt 11811 lmbr2 14888 lmff 14923 |
| Copyright terms: Public domain | W3C validator |