| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzf | GIF version | ||
| Description: The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzf | ⊢ ℤ≥:ℤ⟶𝒫 ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3286 | . . . 4 ⊢ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ⊆ ℤ | |
| 2 | zex 9416 | . . . . 5 ⊢ ℤ ∈ V | |
| 3 | 2 | elpw2 4217 | . . . 4 ⊢ ({𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ ↔ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ⊆ ℤ) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ |
| 5 | 4 | rgenw 2563 | . 2 ⊢ ∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ |
| 6 | df-uz 9684 | . . 3 ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | |
| 7 | 6 | fmpt 5753 | . 2 ⊢ (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ ↔ ℤ≥:ℤ⟶𝒫 ℤ) |
| 8 | 5, 7 | mpbi 145 | 1 ⊢ ℤ≥:ℤ⟶𝒫 ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 ∀wral 2486 {crab 2490 ⊆ wss 3174 𝒫 cpw 3626 class class class wbr 4059 ⟶wf 5286 ≤ cle 8143 ℤcz 9407 ℤ≥cuz 9683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-neg 8281 df-z 9408 df-uz 9684 |
| This theorem is referenced by: eluzel2 9688 uzn0 9699 uzin2 11413 rexanuz 11414 climmpt 11726 lmbr2 14801 lmff 14836 |
| Copyright terms: Public domain | W3C validator |