| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzssz | GIF version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9692 | . 2 ⊢ (𝑦 ∈ (ℤ≥‘𝑀) → 𝑦 ∈ ℤ) | |
| 2 | 1 | ssriv 3205 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3174 ‘cfv 5290 ℤcz 9407 ℤ≥cuz 9683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-neg 8281 df-z 9408 df-uz 9684 |
| This theorem is referenced by: infssuzcldc 10415 zsupssdc 10418 seqf1oglem1 10701 cau3 11541 climz 11718 serclim0 11731 climaddc1 11755 climmulc2 11757 climsubc1 11758 climsubc2 11759 climle 11760 climlec2 11767 summodclem2a 11807 summodclem2 11808 zsumdc 11810 fsum3cvg3 11822 iserabs 11901 isumshft 11916 explecnv 11931 clim2prod 11965 prodfclim1 11970 ntrivcvgap 11974 prodmodclem2a 12002 prodmodclem2 12003 zproddc 12005 4sqlem11 12839 exmidunben 12912 lmbrf 14802 lmres 14835 climcncf 15171 2sqlem6 15712 |
| Copyright terms: Public domain | W3C validator |