Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzssz | GIF version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9471 | . 2 ⊢ (𝑦 ∈ (ℤ≥‘𝑀) → 𝑦 ∈ ℤ) | |
2 | 1 | ssriv 3145 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3115 ‘cfv 5187 ℤcz 9187 ℤ≥cuz 9462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-cnex 7840 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-sbc 2951 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-ov 5844 df-neg 8068 df-z 9188 df-uz 9463 |
This theorem is referenced by: cau3 11053 climz 11229 serclim0 11242 climaddc1 11266 climmulc2 11268 climsubc1 11269 climsubc2 11270 climle 11271 climlec2 11278 summodclem2a 11318 summodclem2 11319 zsumdc 11321 fsum3cvg3 11333 iserabs 11412 isumshft 11427 explecnv 11442 clim2prod 11476 prodfclim1 11481 ntrivcvgap 11485 prodmodclem2a 11513 prodmodclem2 11514 zproddc 11516 infssuzcldc 11880 zsupssdc 11883 exmidunben 12355 lmbrf 12815 lmres 12848 climcncf 13171 2sqlem6 13556 |
Copyright terms: Public domain | W3C validator |