| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzssz | GIF version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9656 | . 2 ⊢ (𝑦 ∈ (ℤ≥‘𝑀) → 𝑦 ∈ ℤ) | |
| 2 | 1 | ssriv 3196 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3165 ‘cfv 5270 ℤcz 9371 ℤ≥cuz 9647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-neg 8245 df-z 9372 df-uz 9648 |
| This theorem is referenced by: infssuzcldc 10376 zsupssdc 10379 seqf1oglem1 10662 cau3 11397 climz 11574 serclim0 11587 climaddc1 11611 climmulc2 11613 climsubc1 11614 climsubc2 11615 climle 11616 climlec2 11623 summodclem2a 11663 summodclem2 11664 zsumdc 11666 fsum3cvg3 11678 iserabs 11757 isumshft 11772 explecnv 11787 clim2prod 11821 prodfclim1 11826 ntrivcvgap 11830 prodmodclem2a 11858 prodmodclem2 11859 zproddc 11861 4sqlem11 12695 exmidunben 12768 lmbrf 14658 lmres 14691 climcncf 15027 2sqlem6 15568 |
| Copyright terms: Public domain | W3C validator |