| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzssz | GIF version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9629 | . 2 ⊢ (𝑦 ∈ (ℤ≥‘𝑀) → 𝑦 ∈ ℤ) | |
| 2 | 1 | ssriv 3188 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3157 ‘cfv 5259 ℤcz 9345 ℤ≥cuz 9620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-cnex 7989 ax-resscn 7990 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-neg 8219 df-z 9346 df-uz 9621 |
| This theorem is referenced by: infssuzcldc 10344 zsupssdc 10347 seqf1oglem1 10630 cau3 11299 climz 11476 serclim0 11489 climaddc1 11513 climmulc2 11515 climsubc1 11516 climsubc2 11517 climle 11518 climlec2 11525 summodclem2a 11565 summodclem2 11566 zsumdc 11568 fsum3cvg3 11580 iserabs 11659 isumshft 11674 explecnv 11689 clim2prod 11723 prodfclim1 11728 ntrivcvgap 11732 prodmodclem2a 11760 prodmodclem2 11761 zproddc 11763 4sqlem11 12597 exmidunben 12670 lmbrf 14559 lmres 14592 climcncf 14928 2sqlem6 15469 |
| Copyright terms: Public domain | W3C validator |