| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzssz | GIF version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9727 | . 2 ⊢ (𝑦 ∈ (ℤ≥‘𝑀) → 𝑦 ∈ ℤ) | |
| 2 | 1 | ssriv 3228 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3197 ‘cfv 5317 ℤcz 9442 ℤ≥cuz 9718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-neg 8316 df-z 9443 df-uz 9719 |
| This theorem is referenced by: infssuzcldc 10450 zsupssdc 10453 seqf1oglem1 10736 cau3 11621 climz 11798 serclim0 11811 climaddc1 11835 climmulc2 11837 climsubc1 11838 climsubc2 11839 climle 11840 climlec2 11847 summodclem2a 11887 summodclem2 11888 zsumdc 11890 fsum3cvg3 11902 iserabs 11981 isumshft 11996 explecnv 12011 clim2prod 12045 prodfclim1 12050 ntrivcvgap 12054 prodmodclem2a 12082 prodmodclem2 12083 zproddc 12085 4sqlem11 12919 exmidunben 12992 lmbrf 14883 lmres 14916 climcncf 15252 2sqlem6 15793 |
| Copyright terms: Public domain | W3C validator |