Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzssz | GIF version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9483 | . 2 ⊢ (𝑦 ∈ (ℤ≥‘𝑀) → 𝑦 ∈ ℤ) | |
2 | 1 | ssriv 3151 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3121 ‘cfv 5196 ℤcz 9199 ℤ≥cuz 9474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-cnex 7852 ax-resscn 7853 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-neg 8080 df-z 9200 df-uz 9475 |
This theorem is referenced by: cau3 11066 climz 11242 serclim0 11255 climaddc1 11279 climmulc2 11281 climsubc1 11282 climsubc2 11283 climle 11284 climlec2 11291 summodclem2a 11331 summodclem2 11332 zsumdc 11334 fsum3cvg3 11346 iserabs 11425 isumshft 11440 explecnv 11455 clim2prod 11489 prodfclim1 11494 ntrivcvgap 11498 prodmodclem2a 11526 prodmodclem2 11527 zproddc 11529 infssuzcldc 11893 zsupssdc 11896 exmidunben 12368 lmbrf 12968 lmres 13001 climcncf 13324 2sqlem6 13709 |
Copyright terms: Public domain | W3C validator |