Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0uz | GIF version |
Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
nn0uz | ⊢ ℕ0 = (ℤ≥‘0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0zrab 9224 | . 2 ⊢ ℕ0 = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} | |
2 | 0z 9210 | . . 3 ⊢ 0 ∈ ℤ | |
3 | uzval 9476 | . . 3 ⊢ (0 ∈ ℤ → (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘}) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} |
5 | 1, 4 | eqtr4i 2194 | 1 ⊢ ℕ0 = (ℤ≥‘0) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 {crab 2452 class class class wbr 3987 ‘cfv 5196 0cc0 7761 ≤ cle 7942 ℕ0cn0 9122 ℤcz 9199 ℤ≥cuz 9474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 |
This theorem is referenced by: elnn0uz 9511 2eluzge0 9521 eluznn0 9545 fseq1p1m1 10037 fz01or 10054 fznn0sub2 10071 nn0split 10079 fzossnn0 10118 frecfzennn 10369 frechashgf1o 10371 exple1 10519 bcval5 10684 bcpasc 10687 hashcl 10702 hashfzo0 10745 zfz1isolemsplit 10760 binom1dif 11437 isumnn0nn 11443 arisum2 11449 expcnvre 11453 explecnv 11455 geoserap 11457 geolim 11461 geolim2 11462 geoisum 11467 geoisumr 11468 mertenslemub 11484 mertenslemi1 11485 mertenslem2 11486 mertensabs 11487 efcllemp 11608 ef0lem 11610 efval 11611 eff 11613 efcvg 11616 efcvgfsum 11617 reefcl 11618 ege2le3 11621 efcj 11623 eftlcvg 11637 eftlub 11640 effsumlt 11642 ef4p 11644 efgt1p2 11645 efgt1p 11646 eflegeo 11651 eirraplem 11726 alginv 11988 algcvg 11989 algcvga 11992 algfx 11993 eucalgcvga 11999 eucalg 12000 phiprmpw 12163 prmdiv 12176 pcfac 12289 ennnfonelemh 12346 ennnfonelemp1 12348 ennnfonelemom 12350 ennnfonelemkh 12354 ennnfonelemrn 12361 dveflem 13440 |
Copyright terms: Public domain | W3C validator |