Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0uz | GIF version |
Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
nn0uz | ⊢ ℕ0 = (ℤ≥‘0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0zrab 9216 | . 2 ⊢ ℕ0 = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} | |
2 | 0z 9202 | . . 3 ⊢ 0 ∈ ℤ | |
3 | uzval 9468 | . . 3 ⊢ (0 ∈ ℤ → (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘}) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} |
5 | 1, 4 | eqtr4i 2189 | 1 ⊢ ℕ0 = (ℤ≥‘0) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 {crab 2448 class class class wbr 3982 ‘cfv 5188 0cc0 7753 ≤ cle 7934 ℕ0cn0 9114 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 |
This theorem is referenced by: elnn0uz 9503 2eluzge0 9513 eluznn0 9537 fseq1p1m1 10029 fz01or 10046 fznn0sub2 10063 nn0split 10071 fzossnn0 10110 frecfzennn 10361 frechashgf1o 10363 exple1 10511 bcval5 10676 bcpasc 10679 hashcl 10694 hashfzo0 10736 zfz1isolemsplit 10751 binom1dif 11428 isumnn0nn 11434 arisum2 11440 expcnvre 11444 explecnv 11446 geoserap 11448 geolim 11452 geolim2 11453 geoisum 11458 geoisumr 11459 mertenslemub 11475 mertenslemi1 11476 mertenslem2 11477 mertensabs 11478 efcllemp 11599 ef0lem 11601 efval 11602 eff 11604 efcvg 11607 efcvgfsum 11608 reefcl 11609 ege2le3 11612 efcj 11614 eftlcvg 11628 eftlub 11631 effsumlt 11633 ef4p 11635 efgt1p2 11636 efgt1p 11637 eflegeo 11642 eirraplem 11717 alginv 11979 algcvg 11980 algcvga 11983 algfx 11984 eucalgcvga 11990 eucalg 11991 phiprmpw 12154 prmdiv 12167 pcfac 12280 ennnfonelemh 12337 ennnfonelemp1 12339 ennnfonelemom 12341 ennnfonelemkh 12345 ennnfonelemrn 12352 dveflem 13327 |
Copyright terms: Public domain | W3C validator |