| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nn0uz | GIF version | ||
| Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| nn0uz | ⊢ ℕ0 = (ℤ≥‘0) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nn0zrab 9351 | . 2 ⊢ ℕ0 = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} | |
| 2 | 0z 9337 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | uzval 9603 | . . 3 ⊢ (0 ∈ ℤ → (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘}) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} | 
| 5 | 1, 4 | eqtr4i 2220 | 1 ⊢ ℕ0 = (ℤ≥‘0) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 {crab 2479 class class class wbr 4033 ‘cfv 5258 0cc0 7879 ≤ cle 8062 ℕ0cn0 9249 ℤcz 9326 ℤ≥cuz 9601 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 | 
| This theorem is referenced by: elnn0uz 9639 2eluzge0 9649 eluznn0 9673 fseq1p1m1 10169 fz01or 10186 fznn0sub2 10203 nn0split 10211 fzossnn0 10251 frecfzennn 10518 frechashgf1o 10520 xnn0nnen 10529 exple1 10687 bcval5 10855 bcpasc 10858 hashcl 10873 hashfzo0 10915 zfz1isolemsplit 10930 binom1dif 11652 isumnn0nn 11658 arisum2 11664 expcnvre 11668 explecnv 11670 geoserap 11672 geolim 11676 geolim2 11677 geoisum 11682 geoisumr 11683 mertenslemub 11699 mertenslemi1 11700 mertenslem2 11701 mertensabs 11702 efcllemp 11823 ef0lem 11825 efval 11826 eff 11828 efcvg 11831 efcvgfsum 11832 reefcl 11833 ege2le3 11836 efcj 11838 eftlcvg 11852 eftlub 11855 effsumlt 11857 ef4p 11859 efgt1p2 11860 efgt1p 11861 eflegeo 11866 eirraplem 11942 bitsfzolem 12118 bitsfzo 12119 nninfctlemfo 12207 alginv 12215 algcvg 12216 algcvga 12219 algfx 12220 eucalgcvga 12226 eucalg 12227 phiprmpw 12390 prmdiv 12403 pcfac 12519 ennnfonelemh 12621 ennnfonelemp1 12623 ennnfonelemom 12625 ennnfonelemkh 12629 ennnfonelemrn 12636 gsumwsubmcl 13128 gsumwmhm 13130 dveflem 14962 ply1termlem 14978 plyaddlem1 14983 plymullem1 14984 plycoeid3 14993 plycolemc 14994 dvply1 15001 0sgmppw 15229 1sgmprm 15230 lgseisenlem1 15311 lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |