| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0uz | GIF version | ||
| Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| nn0uz | ⊢ ℕ0 = (ℤ≥‘0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0zrab 9417 | . 2 ⊢ ℕ0 = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} | |
| 2 | 0z 9403 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | uzval 9670 | . . 3 ⊢ (0 ∈ ℤ → (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘}) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} |
| 5 | 1, 4 | eqtr4i 2230 | 1 ⊢ ℕ0 = (ℤ≥‘0) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 {crab 2489 class class class wbr 4051 ‘cfv 5280 0cc0 7945 ≤ cle 8128 ℕ0cn0 9315 ℤcz 9392 ℤ≥cuz 9668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 |
| This theorem is referenced by: elnn0uz 9706 2eluzge0 9716 eluznn0 9740 fseq1p1m1 10236 fz01or 10253 fznn0sub2 10270 nn0split 10278 fzossnn0 10319 frecfzennn 10593 frechashgf1o 10595 xnn0nnen 10604 exple1 10762 bcval5 10930 bcpasc 10933 hashcl 10948 hashfzo0 10990 zfz1isolemsplit 11005 ccatval2 11077 ccatass 11087 ccatrn 11088 swrdccat2 11147 wrdeqs1cat 11196 cats1un 11197 binom1dif 11873 isumnn0nn 11879 arisum2 11885 expcnvre 11889 explecnv 11891 geoserap 11893 geolim 11897 geolim2 11898 geoisum 11903 geoisumr 11904 mertenslemub 11920 mertenslemi1 11921 mertenslem2 11922 mertensabs 11923 efcllemp 12044 ef0lem 12046 efval 12047 eff 12049 efcvg 12052 efcvgfsum 12053 reefcl 12054 ege2le3 12057 efcj 12059 eftlcvg 12073 eftlub 12076 effsumlt 12078 ef4p 12080 efgt1p2 12081 efgt1p 12082 eflegeo 12087 eirraplem 12163 bitsfzolem 12340 bitsfzo 12341 bitsfi 12343 bitsinv1lem 12347 bitsinv1 12348 nninfctlemfo 12436 alginv 12444 algcvg 12445 algcvga 12448 algfx 12449 eucalgcvga 12455 eucalg 12456 phiprmpw 12619 prmdiv 12632 pcfac 12748 ennnfonelemh 12850 ennnfonelemp1 12852 ennnfonelemom 12854 ennnfonelemkh 12858 ennnfonelemrn 12865 gsumwsubmcl 13403 gsumwmhm 13405 dveflem 15273 ply1termlem 15289 plyaddlem1 15294 plymullem1 15295 plycoeid3 15304 plycolemc 15305 dvply1 15312 0sgmppw 15540 1sgmprm 15541 lgseisenlem1 15622 lgsquadlem2 15630 |
| Copyright terms: Public domain | W3C validator |