| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0uz | GIF version | ||
| Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| nn0uz | ⊢ ℕ0 = (ℤ≥‘0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0zrab 9368 | . 2 ⊢ ℕ0 = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} | |
| 2 | 0z 9354 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | uzval 9620 | . . 3 ⊢ (0 ∈ ℤ → (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘}) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} |
| 5 | 1, 4 | eqtr4i 2220 | 1 ⊢ ℕ0 = (ℤ≥‘0) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 {crab 2479 class class class wbr 4034 ‘cfv 5259 0cc0 7896 ≤ cle 8079 ℕ0cn0 9266 ℤcz 9343 ℤ≥cuz 9618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 |
| This theorem is referenced by: elnn0uz 9656 2eluzge0 9666 eluznn0 9690 fseq1p1m1 10186 fz01or 10203 fznn0sub2 10220 nn0split 10228 fzossnn0 10268 frecfzennn 10535 frechashgf1o 10537 xnn0nnen 10546 exple1 10704 bcval5 10872 bcpasc 10875 hashcl 10890 hashfzo0 10932 zfz1isolemsplit 10947 binom1dif 11669 isumnn0nn 11675 arisum2 11681 expcnvre 11685 explecnv 11687 geoserap 11689 geolim 11693 geolim2 11694 geoisum 11699 geoisumr 11700 mertenslemub 11716 mertenslemi1 11717 mertenslem2 11718 mertensabs 11719 efcllemp 11840 ef0lem 11842 efval 11843 eff 11845 efcvg 11848 efcvgfsum 11849 reefcl 11850 ege2le3 11853 efcj 11855 eftlcvg 11869 eftlub 11872 effsumlt 11874 ef4p 11876 efgt1p2 11877 efgt1p 11878 eflegeo 11883 eirraplem 11959 bitsfzolem 12136 bitsfzo 12137 bitsfi 12139 bitsinv1lem 12143 bitsinv1 12144 nninfctlemfo 12232 alginv 12240 algcvg 12241 algcvga 12244 algfx 12245 eucalgcvga 12251 eucalg 12252 phiprmpw 12415 prmdiv 12428 pcfac 12544 ennnfonelemh 12646 ennnfonelemp1 12648 ennnfonelemom 12650 ennnfonelemkh 12654 ennnfonelemrn 12661 gsumwsubmcl 13198 gsumwmhm 13200 dveflem 15046 ply1termlem 15062 plyaddlem1 15067 plymullem1 15068 plycoeid3 15077 plycolemc 15078 dvply1 15085 0sgmppw 15313 1sgmprm 15314 lgseisenlem1 15395 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |