| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0uz | GIF version | ||
| Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| nn0uz | ⊢ ℕ0 = (ℤ≥‘0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0zrab 9379 | . 2 ⊢ ℕ0 = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} | |
| 2 | 0z 9365 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | uzval 9632 | . . 3 ⊢ (0 ∈ ℤ → (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘}) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} |
| 5 | 1, 4 | eqtr4i 2228 | 1 ⊢ ℕ0 = (ℤ≥‘0) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 {crab 2487 class class class wbr 4043 ‘cfv 5268 0cc0 7907 ≤ cle 8090 ℕ0cn0 9277 ℤcz 9354 ℤ≥cuz 9630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 |
| This theorem is referenced by: elnn0uz 9668 2eluzge0 9678 eluznn0 9702 fseq1p1m1 10198 fz01or 10215 fznn0sub2 10232 nn0split 10240 fzossnn0 10280 frecfzennn 10552 frechashgf1o 10554 xnn0nnen 10563 exple1 10721 bcval5 10889 bcpasc 10892 hashcl 10907 hashfzo0 10949 zfz1isolemsplit 10964 ccatval2 11029 ccatass 11039 ccatrn 11040 binom1dif 11717 isumnn0nn 11723 arisum2 11729 expcnvre 11733 explecnv 11735 geoserap 11737 geolim 11741 geolim2 11742 geoisum 11747 geoisumr 11748 mertenslemub 11764 mertenslemi1 11765 mertenslem2 11766 mertensabs 11767 efcllemp 11888 ef0lem 11890 efval 11891 eff 11893 efcvg 11896 efcvgfsum 11897 reefcl 11898 ege2le3 11901 efcj 11903 eftlcvg 11917 eftlub 11920 effsumlt 11922 ef4p 11924 efgt1p2 11925 efgt1p 11926 eflegeo 11931 eirraplem 12007 bitsfzolem 12184 bitsfzo 12185 bitsfi 12187 bitsinv1lem 12191 bitsinv1 12192 nninfctlemfo 12280 alginv 12288 algcvg 12289 algcvga 12292 algfx 12293 eucalgcvga 12299 eucalg 12300 phiprmpw 12463 prmdiv 12476 pcfac 12592 ennnfonelemh 12694 ennnfonelemp1 12696 ennnfonelemom 12698 ennnfonelemkh 12702 ennnfonelemrn 12709 gsumwsubmcl 13246 gsumwmhm 13248 dveflem 15116 ply1termlem 15132 plyaddlem1 15137 plymullem1 15138 plycoeid3 15147 plycolemc 15148 dvply1 15155 0sgmppw 15383 1sgmprm 15384 lgseisenlem1 15465 lgsquadlem2 15473 |
| Copyright terms: Public domain | W3C validator |