| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0uz | GIF version | ||
| Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| nn0uz | ⊢ ℕ0 = (ℤ≥‘0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0zrab 9467 | . 2 ⊢ ℕ0 = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} | |
| 2 | 0z 9453 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | uzval 9720 | . . 3 ⊢ (0 ∈ ℤ → (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘}) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} |
| 5 | 1, 4 | eqtr4i 2253 | 1 ⊢ ℕ0 = (ℤ≥‘0) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 {crab 2512 class class class wbr 4082 ‘cfv 5317 0cc0 7995 ≤ cle 8178 ℕ0cn0 9365 ℤcz 9442 ℤ≥cuz 9718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 |
| This theorem is referenced by: elnn0uz 9756 2eluzge0 9766 eluznn0 9790 fseq1p1m1 10286 fz01or 10303 fznn0sub2 10320 nn0split 10328 fzossnn0 10369 frecfzennn 10643 frechashgf1o 10645 xnn0nnen 10654 exple1 10812 bcval5 10980 bcpasc 10983 hashcl 10998 hashfzo0 11040 zfz1isolemsplit 11055 ccatval2 11128 ccatass 11138 ccatrn 11139 swrdccat2 11198 wrdeqs1cat 11247 cats1un 11248 cats1fvd 11293 binom1dif 11993 isumnn0nn 11999 arisum2 12005 expcnvre 12009 explecnv 12011 geoserap 12013 geolim 12017 geolim2 12018 geoisum 12023 geoisumr 12024 mertenslemub 12040 mertenslemi1 12041 mertenslem2 12042 mertensabs 12043 efcllemp 12164 ef0lem 12166 efval 12167 eff 12169 efcvg 12172 efcvgfsum 12173 reefcl 12174 ege2le3 12177 efcj 12179 eftlcvg 12193 eftlub 12196 effsumlt 12198 ef4p 12200 efgt1p2 12201 efgt1p 12202 eflegeo 12207 eirraplem 12283 bitsfzolem 12460 bitsfzo 12461 bitsfi 12463 bitsinv1lem 12467 bitsinv1 12468 nninfctlemfo 12556 alginv 12564 algcvg 12565 algcvga 12568 algfx 12569 eucalgcvga 12575 eucalg 12576 phiprmpw 12739 prmdiv 12752 pcfac 12868 ennnfonelemh 12970 ennnfonelemp1 12972 ennnfonelemom 12974 ennnfonelemkh 12978 ennnfonelemrn 12985 gsumwsubmcl 13524 gsumwmhm 13526 dveflem 15394 ply1termlem 15410 plyaddlem1 15415 plymullem1 15416 plycoeid3 15425 plycolemc 15426 dvply1 15433 0sgmppw 15661 1sgmprm 15662 lgseisenlem1 15743 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |