| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0uz | GIF version | ||
| Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| nn0uz | ⊢ ℕ0 = (ℤ≥‘0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0zrab 9370 | . 2 ⊢ ℕ0 = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} | |
| 2 | 0z 9356 | . . 3 ⊢ 0 ∈ ℤ | |
| 3 | uzval 9622 | . . 3 ⊢ (0 ∈ ℤ → (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘}) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} |
| 5 | 1, 4 | eqtr4i 2220 | 1 ⊢ ℕ0 = (ℤ≥‘0) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 {crab 2479 class class class wbr 4034 ‘cfv 5259 0cc0 7898 ≤ cle 8081 ℕ0cn0 9268 ℤcz 9345 ℤ≥cuz 9620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 df-uz 9621 |
| This theorem is referenced by: elnn0uz 9658 2eluzge0 9668 eluznn0 9692 fseq1p1m1 10188 fz01or 10205 fznn0sub2 10222 nn0split 10230 fzossnn0 10270 frecfzennn 10537 frechashgf1o 10539 xnn0nnen 10548 exple1 10706 bcval5 10874 bcpasc 10877 hashcl 10892 hashfzo0 10934 zfz1isolemsplit 10949 binom1dif 11671 isumnn0nn 11677 arisum2 11683 expcnvre 11687 explecnv 11689 geoserap 11691 geolim 11695 geolim2 11696 geoisum 11701 geoisumr 11702 mertenslemub 11718 mertenslemi1 11719 mertenslem2 11720 mertensabs 11721 efcllemp 11842 ef0lem 11844 efval 11845 eff 11847 efcvg 11850 efcvgfsum 11851 reefcl 11852 ege2le3 11855 efcj 11857 eftlcvg 11871 eftlub 11874 effsumlt 11876 ef4p 11878 efgt1p2 11879 efgt1p 11880 eflegeo 11885 eirraplem 11961 bitsfzolem 12138 bitsfzo 12139 bitsfi 12141 bitsinv1lem 12145 bitsinv1 12146 nninfctlemfo 12234 alginv 12242 algcvg 12243 algcvga 12246 algfx 12247 eucalgcvga 12253 eucalg 12254 phiprmpw 12417 prmdiv 12430 pcfac 12546 ennnfonelemh 12648 ennnfonelemp1 12650 ennnfonelemom 12652 ennnfonelemkh 12656 ennnfonelemrn 12663 gsumwsubmcl 13200 gsumwmhm 13202 dveflem 15070 ply1termlem 15086 plyaddlem1 15091 plymullem1 15092 plycoeid3 15101 plycolemc 15102 dvply1 15109 0sgmppw 15337 1sgmprm 15338 lgseisenlem1 15419 lgsquadlem2 15427 |
| Copyright terms: Public domain | W3C validator |