![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0uz | GIF version |
Description: Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
nn0uz | ⊢ ℕ0 = (ℤ≥‘0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0zrab 9342 | . 2 ⊢ ℕ0 = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} | |
2 | 0z 9328 | . . 3 ⊢ 0 ∈ ℤ | |
3 | uzval 9594 | . . 3 ⊢ (0 ∈ ℤ → (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘}) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (ℤ≥‘0) = {𝑘 ∈ ℤ ∣ 0 ≤ 𝑘} |
5 | 1, 4 | eqtr4i 2217 | 1 ⊢ ℕ0 = (ℤ≥‘0) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 {crab 2476 class class class wbr 4029 ‘cfv 5254 0cc0 7872 ≤ cle 8055 ℕ0cn0 9240 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 |
This theorem is referenced by: elnn0uz 9630 2eluzge0 9640 eluznn0 9664 fseq1p1m1 10160 fz01or 10177 fznn0sub2 10194 nn0split 10202 fzossnn0 10242 frecfzennn 10497 frechashgf1o 10499 xnn0nnen 10508 exple1 10666 bcval5 10834 bcpasc 10837 hashcl 10852 hashfzo0 10894 zfz1isolemsplit 10909 binom1dif 11630 isumnn0nn 11636 arisum2 11642 expcnvre 11646 explecnv 11648 geoserap 11650 geolim 11654 geolim2 11655 geoisum 11660 geoisumr 11661 mertenslemub 11677 mertenslemi1 11678 mertenslem2 11679 mertensabs 11680 efcllemp 11801 ef0lem 11803 efval 11804 eff 11806 efcvg 11809 efcvgfsum 11810 reefcl 11811 ege2le3 11814 efcj 11816 eftlcvg 11830 eftlub 11833 effsumlt 11835 ef4p 11837 efgt1p2 11838 efgt1p 11839 eflegeo 11844 eirraplem 11920 nninfctlemfo 12177 alginv 12185 algcvg 12186 algcvga 12189 algfx 12190 eucalgcvga 12196 eucalg 12197 phiprmpw 12360 prmdiv 12373 pcfac 12488 ennnfonelemh 12561 ennnfonelemp1 12563 ennnfonelemom 12565 ennnfonelemkh 12569 ennnfonelemrn 12576 gsumwsubmcl 13068 gsumwmhm 13070 dveflem 14872 ply1termlem 14888 plyaddlem1 14893 plymullem1 14894 lgseisenlem1 15186 |
Copyright terms: Public domain | W3C validator |