![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluz1 | GIF version |
Description: Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
Ref | Expression |
---|---|
eluz1 | ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzval 9594 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) = {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) | |
2 | 1 | eleq2d 2263 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘})) |
3 | breq2 4033 | . . 3 ⊢ (𝑘 = 𝑁 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑁)) | |
4 | 3 | elrab 2916 | . 2 ⊢ (𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘} ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
5 | 2, 4 | bitrdi 196 | 1 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 {crab 2476 class class class wbr 4029 ‘cfv 5254 ≤ cle 8055 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-neg 8193 df-z 9318 df-uz 9593 |
This theorem is referenced by: eluz2 9598 eluz1i 9599 eluz 9605 uzid 9606 uzss 9613 eluzp1m1 9616 eluzadd 9621 eluzsub 9622 raluz 9643 rexuz 9645 caucvgrelemcau 11124 caucvgre 11125 algcvga 12189 |
Copyright terms: Public domain | W3C validator |