| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1i | GIF version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eleq1i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eleq1 2259 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eleq12i 2264 eqeltri 2269 intexrabim 4187 abssexg 4216 abnex 4483 snnex 4484 pwexb 4510 sucexb 4534 omex 4630 iprc 4935 dfse2 5043 fressnfv 5752 fnotovb 5969 f1stres 6226 f2ndres 6227 ottposg 6322 dftpos4 6330 frecabex 6465 oacl 6527 diffifi 6964 djuexb 7119 pitonn 7934 axicn 7949 pnfnre 8087 mnfnre 8088 0mnnnnn0 9300 nprmi 12319 issubm 13176 issrg 13599 srgfcl 13607 subrngrng 13836 txdis1cn 14622 xmeterval 14779 expcncf 14953 gausslemma2dlem1a 15407 2lgslem4 15452 bj-sucexg 15676 |
| Copyright terms: Public domain | W3C validator |