![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1i | GIF version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eleq1i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eleq1 2256 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: eleq12i 2261 eqeltri 2266 intexrabim 4182 abssexg 4211 abnex 4478 snnex 4479 pwexb 4505 sucexb 4529 omex 4625 iprc 4930 dfse2 5038 fressnfv 5745 fnotovb 5961 f1stres 6212 f2ndres 6213 ottposg 6308 dftpos4 6316 frecabex 6451 oacl 6513 diffifi 6950 djuexb 7103 pitonn 7908 axicn 7923 pnfnre 8061 mnfnre 8062 0mnnnnn0 9272 nprmi 12262 issubm 13044 issrg 13461 srgfcl 13469 subrngrng 13698 txdis1cn 14446 xmeterval 14603 expcncf 14763 gausslemma2dlem1a 15174 bj-sucexg 15414 |
Copyright terms: Public domain | W3C validator |