Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq1i | GIF version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eleq1i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eleq1 2229 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: eleq12i 2234 eqeltri 2239 intexrabim 4132 abssexg 4161 abnex 4425 snnex 4426 pwexb 4452 sucexb 4474 omex 4570 iprc 4872 dfse2 4977 fressnfv 5672 fnotovb 5885 f1stres 6127 f2ndres 6128 ottposg 6223 dftpos4 6231 frecabex 6366 oacl 6428 diffifi 6860 djuexb 7009 pitonn 7789 axicn 7804 pnfnre 7940 mnfnre 7941 0mnnnnn0 9146 nprmi 12056 txdis1cn 12928 xmeterval 13085 expcncf 13242 bj-sucexg 13814 |
Copyright terms: Public domain | W3C validator |