| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1i | GIF version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eleq1i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eleq1 2267 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: eleq12i 2272 eqeltri 2277 intexrabim 4196 abssexg 4225 abnex 4492 snnex 4493 pwexb 4519 sucexb 4543 omex 4639 iprc 4944 dfse2 5052 fressnfv 5761 fnotovb 5978 f1stres 6235 f2ndres 6236 ottposg 6331 dftpos4 6339 frecabex 6474 oacl 6536 diffifi 6973 djuexb 7128 pitonn 7943 axicn 7958 pnfnre 8096 mnfnre 8097 0mnnnnn0 9309 nprmi 12365 issubm 13222 issrg 13645 srgfcl 13653 subrngrng 13882 txdis1cn 14668 xmeterval 14825 expcncf 14999 gausslemma2dlem1a 15453 2lgslem4 15498 bj-sucexg 15722 |
| Copyright terms: Public domain | W3C validator |