| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1i | GIF version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eleq1i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eleq1 2292 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: eleq12i 2297 eqeltri 2302 intexrabim 4236 abssexg 4265 abnex 4537 snnex 4538 pwexb 4564 sucexb 4588 omex 4684 iprc 4992 dfse2 5100 fressnfv 5825 fnotovb 6046 f1stres 6303 f2ndres 6304 ottposg 6399 dftpos4 6407 frecabex 6542 oacl 6604 diffifi 7052 djuexb 7207 pitonn 8031 axicn 8046 pnfnre 8184 mnfnre 8185 0mnnnnn0 9397 pfxccatin12lem3 11259 pfxccat3 11261 swrdccat 11262 pfxccat3a 11265 swrdccat3blem 11266 swrdccat3b 11267 nprmi 12641 issubm 13500 issrg 13923 srgfcl 13931 subrngrng 14160 txdis1cn 14946 xmeterval 15103 expcncf 15277 gausslemma2dlem1a 15731 2lgslem4 15776 bj-sucexg 16243 |
| Copyright terms: Public domain | W3C validator |