| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1i | GIF version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eleq1i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eleq1 2269 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: eleq12i 2274 eqeltri 2279 intexrabim 4205 abssexg 4234 abnex 4502 snnex 4503 pwexb 4529 sucexb 4553 omex 4649 iprc 4956 dfse2 5064 fressnfv 5784 fnotovb 6001 f1stres 6258 f2ndres 6259 ottposg 6354 dftpos4 6362 frecabex 6497 oacl 6559 diffifi 7006 djuexb 7161 pitonn 7981 axicn 7996 pnfnre 8134 mnfnre 8135 0mnnnnn0 9347 nprmi 12521 issubm 13379 issrg 13802 srgfcl 13810 subrngrng 14039 txdis1cn 14825 xmeterval 14982 expcncf 15156 gausslemma2dlem1a 15610 2lgslem4 15655 bj-sucexg 15996 |
| Copyright terms: Public domain | W3C validator |