Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq1i | GIF version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eleq1i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eleq1 2238 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∈ wcel 2146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: eleq12i 2243 eqeltri 2248 intexrabim 4148 abssexg 4177 abnex 4441 snnex 4442 pwexb 4468 sucexb 4490 omex 4586 iprc 4888 dfse2 4994 fressnfv 5695 fnotovb 5908 f1stres 6150 f2ndres 6151 ottposg 6246 dftpos4 6254 frecabex 6389 oacl 6451 diffifi 6884 djuexb 7033 pitonn 7822 axicn 7837 pnfnre 7973 mnfnre 7974 0mnnnnn0 9181 nprmi 12091 issubm 12735 issrg 12954 srgfcl 12962 txdis1cn 13358 xmeterval 13515 expcncf 13672 bj-sucexg 14243 |
Copyright terms: Public domain | W3C validator |