Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq1i | GIF version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eleq1i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eleq1 2233 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: eleq12i 2238 eqeltri 2243 intexrabim 4139 abssexg 4168 abnex 4432 snnex 4433 pwexb 4459 sucexb 4481 omex 4577 iprc 4879 dfse2 4984 fressnfv 5683 fnotovb 5896 f1stres 6138 f2ndres 6139 ottposg 6234 dftpos4 6242 frecabex 6377 oacl 6439 diffifi 6872 djuexb 7021 pitonn 7810 axicn 7825 pnfnre 7961 mnfnre 7962 0mnnnnn0 9167 nprmi 12078 issubm 12695 txdis1cn 13072 xmeterval 13229 expcncf 13386 bj-sucexg 13957 |
Copyright terms: Public domain | W3C validator |