ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq1i GIF version

Theorem eleq1i 2243
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
eleq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
eleq1i (𝐴𝐶𝐵𝐶)

Proof of Theorem eleq1i
StepHypRef Expression
1 eleq1i.1 . 2 𝐴 = 𝐵
2 eleq1 2240 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2ax-mp 5 1 (𝐴𝐶𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173
This theorem is referenced by:  eleq12i  2245  eqeltri  2250  intexrabim  4153  abssexg  4182  abnex  4447  snnex  4448  pwexb  4474  sucexb  4496  omex  4592  iprc  4895  dfse2  5001  fressnfv  5703  fnotovb  5917  f1stres  6159  f2ndres  6160  ottposg  6255  dftpos4  6263  frecabex  6398  oacl  6460  diffifi  6893  djuexb  7042  pitonn  7846  axicn  7861  pnfnre  7998  mnfnre  7999  0mnnnnn0  9207  nprmi  12123  issubm  12862  issrg  13146  srgfcl  13154  txdis1cn  13748  xmeterval  13905  expcncf  14062  bj-sucexg  14644
  Copyright terms: Public domain W3C validator