| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1i | GIF version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eleq1i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eleq1 2259 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eleq12i 2264 eqeltri 2269 intexrabim 4187 abssexg 4216 abnex 4483 snnex 4484 pwexb 4510 sucexb 4534 omex 4630 iprc 4935 dfse2 5043 fressnfv 5752 fnotovb 5969 f1stres 6226 f2ndres 6227 ottposg 6322 dftpos4 6330 frecabex 6465 oacl 6527 diffifi 6964 djuexb 7119 pitonn 7932 axicn 7947 pnfnre 8085 mnfnre 8086 0mnnnnn0 9298 nprmi 12317 issubm 13174 issrg 13597 srgfcl 13605 subrngrng 13834 txdis1cn 14598 xmeterval 14755 expcncf 14929 gausslemma2dlem1a 15383 2lgslem4 15428 bj-sucexg 15652 |
| Copyright terms: Public domain | W3C validator |