Proof of Theorem ennnfonelem1
Step | Hyp | Ref
| Expression |
1 | | ennnfonelemh.dceq |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
2 | | ennnfonelemh.f |
. . . 4
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
3 | | ennnfonelemh.ne |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
4 | | ennnfonelemh.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
5 | | ennnfonelemh.n |
. . . 4
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
6 | | ennnfonelemh.j |
. . . 4
⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
7 | | ennnfonelemh.h |
. . . 4
⊢ 𝐻 = seq0(𝐺, 𝐽) |
8 | | 0nn0 9150 |
. . . . 5
⊢ 0 ∈
ℕ0 |
9 | 8 | a1i 9 |
. . . 4
⊢ (𝜑 → 0 ∈
ℕ0) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | ennnfonelemp1 12361 |
. . 3
⊢ (𝜑 → (𝐻‘(0 + 1)) = if((𝐹‘(◡𝑁‘0)) ∈ (𝐹 “ (◡𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {〈dom (𝐻‘0), (𝐹‘(◡𝑁‘0))〉}))) |
11 | | 1e0p1 9384 |
. . . . . 6
⊢ 1 = (0 +
1) |
12 | 11 | fveq2i 5499 |
. . . . 5
⊢ (𝐻‘1) = (𝐻‘(0 + 1)) |
13 | 12 | eqcomi 2174 |
. . . 4
⊢ (𝐻‘(0 + 1)) = (𝐻‘1) |
14 | 13 | a1i 9 |
. . 3
⊢ (𝜑 → (𝐻‘(0 + 1)) = (𝐻‘1)) |
15 | | 0zd 9224 |
. . . . . . . . . 10
⊢ (⊤
→ 0 ∈ ℤ) |
16 | 15, 5 | frec2uz0d 10355 |
. . . . . . . . 9
⊢ (⊤
→ (𝑁‘∅) =
0) |
17 | 16 | mptru 1357 |
. . . . . . . 8
⊢ (𝑁‘∅) =
0 |
18 | 15, 5 | frec2uzf1od 10362 |
. . . . . . . . . 10
⊢ (⊤
→ 𝑁:ω–1-1-onto→(ℤ≥‘0)) |
19 | 18 | mptru 1357 |
. . . . . . . . 9
⊢ 𝑁:ω–1-1-onto→(ℤ≥‘0) |
20 | | peano1 4578 |
. . . . . . . . 9
⊢ ∅
∈ ω |
21 | | 0z 9223 |
. . . . . . . . . 10
⊢ 0 ∈
ℤ |
22 | | uzid 9501 |
. . . . . . . . . 10
⊢ (0 ∈
ℤ → 0 ∈ (ℤ≥‘0)) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . . 9
⊢ 0 ∈
(ℤ≥‘0) |
24 | | f1ocnvfvb 5759 |
. . . . . . . . 9
⊢ ((𝑁:ω–1-1-onto→(ℤ≥‘0) ∧ ∅
∈ ω ∧ 0 ∈ (ℤ≥‘0)) → ((𝑁‘∅) = 0 ↔
(◡𝑁‘0) = ∅)) |
25 | 19, 20, 23, 24 | mp3an 1332 |
. . . . . . . 8
⊢ ((𝑁‘∅) = 0 ↔
(◡𝑁‘0) = ∅) |
26 | 17, 25 | mpbi 144 |
. . . . . . 7
⊢ (◡𝑁‘0) = ∅ |
27 | 26 | fveq2i 5499 |
. . . . . 6
⊢ (𝐹‘(◡𝑁‘0)) = (𝐹‘∅) |
28 | 26 | imaeq2i 4951 |
. . . . . 6
⊢ (𝐹 “ (◡𝑁‘0)) = (𝐹 “ ∅) |
29 | 27, 28 | eleq12i 2238 |
. . . . 5
⊢ ((𝐹‘(◡𝑁‘0)) ∈ (𝐹 “ (◡𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅)) |
30 | 29 | a1i 9 |
. . . 4
⊢ (𝜑 → ((𝐹‘(◡𝑁‘0)) ∈ (𝐹 “ (◡𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅))) |
31 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelem0 12360 |
. . . 4
⊢ (𝜑 → (𝐻‘0) = ∅) |
32 | 31 | dmeqd 4813 |
. . . . . . 7
⊢ (𝜑 → dom (𝐻‘0) = dom ∅) |
33 | 27 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(◡𝑁‘0)) = (𝐹‘∅)) |
34 | 32, 33 | opeq12d 3773 |
. . . . . 6
⊢ (𝜑 → 〈dom (𝐻‘0), (𝐹‘(◡𝑁‘0))〉 = 〈dom ∅, (𝐹‘∅)〉) |
35 | 34 | sneqd 3596 |
. . . . 5
⊢ (𝜑 → {〈dom (𝐻‘0), (𝐹‘(◡𝑁‘0))〉} = {〈dom ∅,
(𝐹‘∅)〉}) |
36 | 31, 35 | uneq12d 3282 |
. . . 4
⊢ (𝜑 → ((𝐻‘0) ∪ {〈dom (𝐻‘0), (𝐹‘(◡𝑁‘0))〉}) = (∅ ∪
{〈dom ∅, (𝐹‘∅)〉})) |
37 | 30, 31, 36 | ifbieq12d 3552 |
. . 3
⊢ (𝜑 → if((𝐹‘(◡𝑁‘0)) ∈ (𝐹 “ (◡𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {〈dom (𝐻‘0), (𝐹‘(◡𝑁‘0))〉})) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪
{〈dom ∅, (𝐹‘∅)〉}))) |
38 | 10, 14, 37 | 3eqtr3d 2211 |
. 2
⊢ (𝜑 → (𝐻‘1) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪
{〈dom ∅, (𝐹‘∅)〉}))) |
39 | | noel 3418 |
. . . . 5
⊢ ¬
(𝐹‘∅) ∈
∅ |
40 | | ima0 4970 |
. . . . . 6
⊢ (𝐹 “ ∅) =
∅ |
41 | 40 | eleq2i 2237 |
. . . . 5
⊢ ((𝐹‘∅) ∈ (𝐹 “ ∅) ↔ (𝐹‘∅) ∈
∅) |
42 | 39, 41 | mtbir 666 |
. . . 4
⊢ ¬
(𝐹‘∅) ∈
(𝐹 “
∅) |
43 | 42 | iffalsei 3535 |
. . 3
⊢ if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅,
(∅ ∪ {〈dom ∅, (𝐹‘∅)〉})) = (∅ ∪
{〈dom ∅, (𝐹‘∅)〉}) |
44 | | uncom 3271 |
. . . 4
⊢ (∅
∪ {〈dom ∅, (𝐹‘∅)〉}) = ({〈dom
∅, (𝐹‘∅)〉} ∪
∅) |
45 | | un0 3448 |
. . . 4
⊢
({〈dom ∅, (𝐹‘∅)〉} ∪ ∅) =
{〈dom ∅, (𝐹‘∅)〉} |
46 | 44, 45 | eqtri 2191 |
. . 3
⊢ (∅
∪ {〈dom ∅, (𝐹‘∅)〉}) = {〈dom
∅, (𝐹‘∅)〉} |
47 | | dm0 4825 |
. . . . 5
⊢ dom
∅ = ∅ |
48 | 47 | opeq1i 3768 |
. . . 4
⊢ 〈dom
∅, (𝐹‘∅)〉 = 〈∅,
(𝐹‘∅)〉 |
49 | 48 | sneqi 3595 |
. . 3
⊢
{〈dom ∅, (𝐹‘∅)〉} = {〈∅,
(𝐹‘∅)〉} |
50 | 43, 46, 49 | 3eqtri 2195 |
. 2
⊢ if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅,
(∅ ∪ {〈dom ∅, (𝐹‘∅)〉})) = {〈∅,
(𝐹‘∅)〉} |
51 | 38, 50 | eqtrdi 2219 |
1
⊢ (𝜑 → (𝐻‘1) = {〈∅, (𝐹‘∅)〉}) |