ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelem1 GIF version

Theorem ennnfonelem1 12649
Description: Lemma for ennnfone 12667. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelem1 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelem1
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . 4 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . 4 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . 4 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . 4 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . 4 𝐻 = seq0(𝐺, 𝐽)
8 0nn0 9281 . . . . 5 0 ∈ ℕ0
98a1i 9 . . . 4 (𝜑 → 0 ∈ ℕ0)
101, 2, 3, 4, 5, 6, 7, 9ennnfonelemp1 12648 . . 3 (𝜑 → (𝐻‘(0 + 1)) = if((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩})))
11 1e0p1 9515 . . . . . 6 1 = (0 + 1)
1211fveq2i 5564 . . . . 5 (𝐻‘1) = (𝐻‘(0 + 1))
1312eqcomi 2200 . . . 4 (𝐻‘(0 + 1)) = (𝐻‘1)
1413a1i 9 . . 3 (𝜑 → (𝐻‘(0 + 1)) = (𝐻‘1))
15 0zd 9355 . . . . . . . . . 10 (⊤ → 0 ∈ ℤ)
1615, 5frec2uz0d 10508 . . . . . . . . 9 (⊤ → (𝑁‘∅) = 0)
1716mptru 1373 . . . . . . . 8 (𝑁‘∅) = 0
1815, 5frec2uzf1od 10515 . . . . . . . . . 10 (⊤ → 𝑁:ω–1-1-onto→(ℤ‘0))
1918mptru 1373 . . . . . . . . 9 𝑁:ω–1-1-onto→(ℤ‘0)
20 peano1 4631 . . . . . . . . 9 ∅ ∈ ω
21 0z 9354 . . . . . . . . . 10 0 ∈ ℤ
22 uzid 9632 . . . . . . . . . 10 (0 ∈ ℤ → 0 ∈ (ℤ‘0))
2321, 22ax-mp 5 . . . . . . . . 9 0 ∈ (ℤ‘0)
24 f1ocnvfvb 5830 . . . . . . . . 9 ((𝑁:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω ∧ 0 ∈ (ℤ‘0)) → ((𝑁‘∅) = 0 ↔ (𝑁‘0) = ∅))
2519, 20, 23, 24mp3an 1348 . . . . . . . 8 ((𝑁‘∅) = 0 ↔ (𝑁‘0) = ∅)
2617, 25mpbi 145 . . . . . . 7 (𝑁‘0) = ∅
2726fveq2i 5564 . . . . . 6 (𝐹‘(𝑁‘0)) = (𝐹‘∅)
2826imaeq2i 5008 . . . . . 6 (𝐹 “ (𝑁‘0)) = (𝐹 “ ∅)
2927, 28eleq12i 2264 . . . . 5 ((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅))
3029a1i 9 . . . 4 (𝜑 → ((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅)))
311, 2, 3, 4, 5, 6, 7ennnfonelem0 12647 . . . 4 (𝜑 → (𝐻‘0) = ∅)
3231dmeqd 4869 . . . . . . 7 (𝜑 → dom (𝐻‘0) = dom ∅)
3327a1i 9 . . . . . . 7 (𝜑 → (𝐹‘(𝑁‘0)) = (𝐹‘∅))
3432, 33opeq12d 3817 . . . . . 6 (𝜑 → ⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩ = ⟨dom ∅, (𝐹‘∅)⟩)
3534sneqd 3636 . . . . 5 (𝜑 → {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩} = {⟨dom ∅, (𝐹‘∅)⟩})
3631, 35uneq12d 3319 . . . 4 (𝜑 → ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩}) = (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}))
3730, 31, 36ifbieq12d 3588 . . 3 (𝜑 → if((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩})) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})))
3810, 14, 373eqtr3d 2237 . 2 (𝜑 → (𝐻‘1) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})))
39 noel 3455 . . . . 5 ¬ (𝐹‘∅) ∈ ∅
40 ima0 5029 . . . . . 6 (𝐹 “ ∅) = ∅
4140eleq2i 2263 . . . . 5 ((𝐹‘∅) ∈ (𝐹 “ ∅) ↔ (𝐹‘∅) ∈ ∅)
4239, 41mtbir 672 . . . 4 ¬ (𝐹‘∅) ∈ (𝐹 “ ∅)
4342iffalsei 3571 . . 3 if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})) = (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})
44 uncom 3308 . . . 4 (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}) = ({⟨dom ∅, (𝐹‘∅)⟩} ∪ ∅)
45 un0 3485 . . . 4 ({⟨dom ∅, (𝐹‘∅)⟩} ∪ ∅) = {⟨dom ∅, (𝐹‘∅)⟩}
4644, 45eqtri 2217 . . 3 (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}) = {⟨dom ∅, (𝐹‘∅)⟩}
47 dm0 4881 . . . . 5 dom ∅ = ∅
4847opeq1i 3812 . . . 4 ⟨dom ∅, (𝐹‘∅)⟩ = ⟨∅, (𝐹‘∅)⟩
4948sneqi 3635 . . 3 {⟨dom ∅, (𝐹‘∅)⟩} = {⟨∅, (𝐹‘∅)⟩}
5043, 46, 493eqtri 2221 . 2 if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})) = {⟨∅, (𝐹‘∅)⟩}
5138, 50eqtrdi 2245 1 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 835   = wceq 1364  wtru 1365  wcel 2167  wne 2367  wral 2475  wrex 2476  cun 3155  c0 3451  ifcif 3562  {csn 3623  cop 3626  cmpt 4095  suc csuc 4401  ωcom 4627  ccnv 4663  dom cdm 4664  cima 4667  ontowfo 5257  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  cmpo 5927  freccfrec 6457  pm cpm 6717  0cc0 7896  1c1 7897   + caddc 7899  cmin 8214  0cn0 9266  cz 9343  cuz 9618  seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pm 6719  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557
This theorem is referenced by:  ennnfonelemhom  12657
  Copyright terms: Public domain W3C validator