Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelem1 GIF version

Theorem ennnfonelem1 11979
 Description: Lemma for ennnfone 11997. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelem1 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelem1
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . 4 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . 4 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . 4 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . 4 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . 4 𝐻 = seq0(𝐺, 𝐽)
8 0nn0 9039 . . . . 5 0 ∈ ℕ0
98a1i 9 . . . 4 (𝜑 → 0 ∈ ℕ0)
101, 2, 3, 4, 5, 6, 7, 9ennnfonelemp1 11978 . . 3 (𝜑 → (𝐻‘(0 + 1)) = if((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩})))
11 1e0p1 9270 . . . . . 6 1 = (0 + 1)
1211fveq2i 5434 . . . . 5 (𝐻‘1) = (𝐻‘(0 + 1))
1312eqcomi 2144 . . . 4 (𝐻‘(0 + 1)) = (𝐻‘1)
1413a1i 9 . . 3 (𝜑 → (𝐻‘(0 + 1)) = (𝐻‘1))
15 0zd 9113 . . . . . . . . . 10 (⊤ → 0 ∈ ℤ)
1615, 5frec2uz0d 10226 . . . . . . . . 9 (⊤ → (𝑁‘∅) = 0)
1716mptru 1341 . . . . . . . 8 (𝑁‘∅) = 0
1815, 5frec2uzf1od 10233 . . . . . . . . . 10 (⊤ → 𝑁:ω–1-1-onto→(ℤ‘0))
1918mptru 1341 . . . . . . . . 9 𝑁:ω–1-1-onto→(ℤ‘0)
20 peano1 4517 . . . . . . . . 9 ∅ ∈ ω
21 0z 9112 . . . . . . . . . 10 0 ∈ ℤ
22 uzid 9387 . . . . . . . . . 10 (0 ∈ ℤ → 0 ∈ (ℤ‘0))
2321, 22ax-mp 5 . . . . . . . . 9 0 ∈ (ℤ‘0)
24 f1ocnvfvb 5691 . . . . . . . . 9 ((𝑁:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω ∧ 0 ∈ (ℤ‘0)) → ((𝑁‘∅) = 0 ↔ (𝑁‘0) = ∅))
2519, 20, 23, 24mp3an 1316 . . . . . . . 8 ((𝑁‘∅) = 0 ↔ (𝑁‘0) = ∅)
2617, 25mpbi 144 . . . . . . 7 (𝑁‘0) = ∅
2726fveq2i 5434 . . . . . 6 (𝐹‘(𝑁‘0)) = (𝐹‘∅)
2826imaeq2i 4889 . . . . . 6 (𝐹 “ (𝑁‘0)) = (𝐹 “ ∅)
2927, 28eleq12i 2208 . . . . 5 ((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅))
3029a1i 9 . . . 4 (𝜑 → ((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅)))
311, 2, 3, 4, 5, 6, 7ennnfonelem0 11977 . . . 4 (𝜑 → (𝐻‘0) = ∅)
3231dmeqd 4751 . . . . . . 7 (𝜑 → dom (𝐻‘0) = dom ∅)
3327a1i 9 . . . . . . 7 (𝜑 → (𝐹‘(𝑁‘0)) = (𝐹‘∅))
3432, 33opeq12d 3722 . . . . . 6 (𝜑 → ⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩ = ⟨dom ∅, (𝐹‘∅)⟩)
3534sneqd 3546 . . . . 5 (𝜑 → {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩} = {⟨dom ∅, (𝐹‘∅)⟩})
3631, 35uneq12d 3237 . . . 4 (𝜑 → ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩}) = (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}))
3730, 31, 36ifbieq12d 3504 . . 3 (𝜑 → if((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩})) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})))
3810, 14, 373eqtr3d 2181 . 2 (𝜑 → (𝐻‘1) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})))
39 noel 3373 . . . . 5 ¬ (𝐹‘∅) ∈ ∅
40 ima0 4908 . . . . . 6 (𝐹 “ ∅) = ∅
4140eleq2i 2207 . . . . 5 ((𝐹‘∅) ∈ (𝐹 “ ∅) ↔ (𝐹‘∅) ∈ ∅)
4239, 41mtbir 661 . . . 4 ¬ (𝐹‘∅) ∈ (𝐹 “ ∅)
4342iffalsei 3489 . . 3 if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})) = (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})
44 uncom 3226 . . . 4 (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}) = ({⟨dom ∅, (𝐹‘∅)⟩} ∪ ∅)
45 un0 3402 . . . 4 ({⟨dom ∅, (𝐹‘∅)⟩} ∪ ∅) = {⟨dom ∅, (𝐹‘∅)⟩}
4644, 45eqtri 2161 . . 3 (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}) = {⟨dom ∅, (𝐹‘∅)⟩}
47 dm0 4763 . . . . 5 dom ∅ = ∅
4847opeq1i 3717 . . . 4 ⟨dom ∅, (𝐹‘∅)⟩ = ⟨∅, (𝐹‘∅)⟩
4948sneqi 3545 . . 3 {⟨dom ∅, (𝐹‘∅)⟩} = {⟨∅, (𝐹‘∅)⟩}
5043, 46, 493eqtri 2165 . 2 if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})) = {⟨∅, (𝐹‘∅)⟩}
5138, 50eqtrdi 2189 1 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104  DECID wdc 820   = wceq 1332  ⊤wtru 1333   ∈ wcel 1481   ≠ wne 2309  ∀wral 2417  ∃wrex 2418   ∪ cun 3075  ∅c0 3369  ifcif 3480  {csn 3533  ⟨cop 3536   ↦ cmpt 3998  suc csuc 4296  ωcom 4513  ◡ccnv 4548  dom cdm 4549   “ cima 4552  –onto→wfo 5131  –1-1-onto→wf1o 5132  ‘cfv 5133  (class class class)co 5784   ∈ cmpo 5786  freccfrec 6297   ↑pm cpm 6553  0cc0 7667  1c1 7668   + caddc 7670   − cmin 7980  ℕ0cn0 9024  ℤcz 9101  ℤ≥cuz 9373  seqcseq 10272 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7758  ax-resscn 7759  ax-1cn 7760  ax-1re 7761  ax-icn 7762  ax-addcl 7763  ax-addrcl 7764  ax-mulcl 7765  ax-addcom 7767  ax-addass 7769  ax-distr 7771  ax-i2m1 7772  ax-0lt1 7773  ax-0id 7775  ax-rnegex 7776  ax-cnre 7778  ax-pre-ltirr 7779  ax-pre-ltwlin 7780  ax-pre-lttrn 7781  ax-pre-ltadd 7783 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4555  df-rel 4556  df-cnv 4557  df-co 4558  df-dm 4559  df-rn 4560  df-res 4561  df-ima 4562  df-iota 5098  df-fun 5135  df-fn 5136  df-f 5137  df-f1 5138  df-fo 5139  df-f1o 5140  df-fv 5141  df-riota 5740  df-ov 5787  df-oprab 5788  df-mpo 5789  df-1st 6048  df-2nd 6049  df-recs 6212  df-frec 6298  df-pm 6555  df-pnf 7849  df-mnf 7850  df-xr 7851  df-ltxr 7852  df-le 7853  df-sub 7982  df-neg 7983  df-inn 8768  df-n0 9025  df-z 9102  df-uz 9374  df-seqfrec 10273 This theorem is referenced by:  ennnfonelemhom  11987
 Copyright terms: Public domain W3C validator