ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelem1 GIF version

Theorem ennnfonelem1 12340
Description: Lemma for ennnfone 12358. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelem1 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelem1
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . 4 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . 4 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . 4 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . 4 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . 4 𝐻 = seq0(𝐺, 𝐽)
8 0nn0 9129 . . . . 5 0 ∈ ℕ0
98a1i 9 . . . 4 (𝜑 → 0 ∈ ℕ0)
101, 2, 3, 4, 5, 6, 7, 9ennnfonelemp1 12339 . . 3 (𝜑 → (𝐻‘(0 + 1)) = if((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩})))
11 1e0p1 9363 . . . . . 6 1 = (0 + 1)
1211fveq2i 5489 . . . . 5 (𝐻‘1) = (𝐻‘(0 + 1))
1312eqcomi 2169 . . . 4 (𝐻‘(0 + 1)) = (𝐻‘1)
1413a1i 9 . . 3 (𝜑 → (𝐻‘(0 + 1)) = (𝐻‘1))
15 0zd 9203 . . . . . . . . . 10 (⊤ → 0 ∈ ℤ)
1615, 5frec2uz0d 10334 . . . . . . . . 9 (⊤ → (𝑁‘∅) = 0)
1716mptru 1352 . . . . . . . 8 (𝑁‘∅) = 0
1815, 5frec2uzf1od 10341 . . . . . . . . . 10 (⊤ → 𝑁:ω–1-1-onto→(ℤ‘0))
1918mptru 1352 . . . . . . . . 9 𝑁:ω–1-1-onto→(ℤ‘0)
20 peano1 4571 . . . . . . . . 9 ∅ ∈ ω
21 0z 9202 . . . . . . . . . 10 0 ∈ ℤ
22 uzid 9480 . . . . . . . . . 10 (0 ∈ ℤ → 0 ∈ (ℤ‘0))
2321, 22ax-mp 5 . . . . . . . . 9 0 ∈ (ℤ‘0)
24 f1ocnvfvb 5748 . . . . . . . . 9 ((𝑁:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω ∧ 0 ∈ (ℤ‘0)) → ((𝑁‘∅) = 0 ↔ (𝑁‘0) = ∅))
2519, 20, 23, 24mp3an 1327 . . . . . . . 8 ((𝑁‘∅) = 0 ↔ (𝑁‘0) = ∅)
2617, 25mpbi 144 . . . . . . 7 (𝑁‘0) = ∅
2726fveq2i 5489 . . . . . 6 (𝐹‘(𝑁‘0)) = (𝐹‘∅)
2826imaeq2i 4944 . . . . . 6 (𝐹 “ (𝑁‘0)) = (𝐹 “ ∅)
2927, 28eleq12i 2234 . . . . 5 ((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅))
3029a1i 9 . . . 4 (𝜑 → ((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅)))
311, 2, 3, 4, 5, 6, 7ennnfonelem0 12338 . . . 4 (𝜑 → (𝐻‘0) = ∅)
3231dmeqd 4806 . . . . . . 7 (𝜑 → dom (𝐻‘0) = dom ∅)
3327a1i 9 . . . . . . 7 (𝜑 → (𝐹‘(𝑁‘0)) = (𝐹‘∅))
3432, 33opeq12d 3766 . . . . . 6 (𝜑 → ⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩ = ⟨dom ∅, (𝐹‘∅)⟩)
3534sneqd 3589 . . . . 5 (𝜑 → {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩} = {⟨dom ∅, (𝐹‘∅)⟩})
3631, 35uneq12d 3277 . . . 4 (𝜑 → ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩}) = (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}))
3730, 31, 36ifbieq12d 3546 . . 3 (𝜑 → if((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩})) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})))
3810, 14, 373eqtr3d 2206 . 2 (𝜑 → (𝐻‘1) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})))
39 noel 3413 . . . . 5 ¬ (𝐹‘∅) ∈ ∅
40 ima0 4963 . . . . . 6 (𝐹 “ ∅) = ∅
4140eleq2i 2233 . . . . 5 ((𝐹‘∅) ∈ (𝐹 “ ∅) ↔ (𝐹‘∅) ∈ ∅)
4239, 41mtbir 661 . . . 4 ¬ (𝐹‘∅) ∈ (𝐹 “ ∅)
4342iffalsei 3529 . . 3 if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})) = (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})
44 uncom 3266 . . . 4 (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}) = ({⟨dom ∅, (𝐹‘∅)⟩} ∪ ∅)
45 un0 3442 . . . 4 ({⟨dom ∅, (𝐹‘∅)⟩} ∪ ∅) = {⟨dom ∅, (𝐹‘∅)⟩}
4644, 45eqtri 2186 . . 3 (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}) = {⟨dom ∅, (𝐹‘∅)⟩}
47 dm0 4818 . . . . 5 dom ∅ = ∅
4847opeq1i 3761 . . . 4 ⟨dom ∅, (𝐹‘∅)⟩ = ⟨∅, (𝐹‘∅)⟩
4948sneqi 3588 . . 3 {⟨dom ∅, (𝐹‘∅)⟩} = {⟨∅, (𝐹‘∅)⟩}
5043, 46, 493eqtri 2190 . 2 if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})) = {⟨∅, (𝐹‘∅)⟩}
5138, 50eqtrdi 2215 1 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  DECID wdc 824   = wceq 1343  wtru 1344  wcel 2136  wne 2336  wral 2444  wrex 2445  cun 3114  c0 3409  ifcif 3520  {csn 3576  cop 3579  cmpt 4043  suc csuc 4343  ωcom 4567  ccnv 4603  dom cdm 4604  cima 4607  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cmpo 5844  freccfrec 6358  pm cpm 6615  0cc0 7753  1c1 7754   + caddc 7756  cmin 8069  0cn0 9114  cz 9191  cuz 9466  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pm 6617  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381
This theorem is referenced by:  ennnfonelemhom  12348
  Copyright terms: Public domain W3C validator