ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelem1 GIF version

Theorem ennnfonelem1 12362
Description: Lemma for ennnfone 12380. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelem1 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelem1
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . 4 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . 4 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . 4 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . 4 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . 4 𝐻 = seq0(𝐺, 𝐽)
8 0nn0 9150 . . . . 5 0 ∈ ℕ0
98a1i 9 . . . 4 (𝜑 → 0 ∈ ℕ0)
101, 2, 3, 4, 5, 6, 7, 9ennnfonelemp1 12361 . . 3 (𝜑 → (𝐻‘(0 + 1)) = if((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩})))
11 1e0p1 9384 . . . . . 6 1 = (0 + 1)
1211fveq2i 5499 . . . . 5 (𝐻‘1) = (𝐻‘(0 + 1))
1312eqcomi 2174 . . . 4 (𝐻‘(0 + 1)) = (𝐻‘1)
1413a1i 9 . . 3 (𝜑 → (𝐻‘(0 + 1)) = (𝐻‘1))
15 0zd 9224 . . . . . . . . . 10 (⊤ → 0 ∈ ℤ)
1615, 5frec2uz0d 10355 . . . . . . . . 9 (⊤ → (𝑁‘∅) = 0)
1716mptru 1357 . . . . . . . 8 (𝑁‘∅) = 0
1815, 5frec2uzf1od 10362 . . . . . . . . . 10 (⊤ → 𝑁:ω–1-1-onto→(ℤ‘0))
1918mptru 1357 . . . . . . . . 9 𝑁:ω–1-1-onto→(ℤ‘0)
20 peano1 4578 . . . . . . . . 9 ∅ ∈ ω
21 0z 9223 . . . . . . . . . 10 0 ∈ ℤ
22 uzid 9501 . . . . . . . . . 10 (0 ∈ ℤ → 0 ∈ (ℤ‘0))
2321, 22ax-mp 5 . . . . . . . . 9 0 ∈ (ℤ‘0)
24 f1ocnvfvb 5759 . . . . . . . . 9 ((𝑁:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω ∧ 0 ∈ (ℤ‘0)) → ((𝑁‘∅) = 0 ↔ (𝑁‘0) = ∅))
2519, 20, 23, 24mp3an 1332 . . . . . . . 8 ((𝑁‘∅) = 0 ↔ (𝑁‘0) = ∅)
2617, 25mpbi 144 . . . . . . 7 (𝑁‘0) = ∅
2726fveq2i 5499 . . . . . 6 (𝐹‘(𝑁‘0)) = (𝐹‘∅)
2826imaeq2i 4951 . . . . . 6 (𝐹 “ (𝑁‘0)) = (𝐹 “ ∅)
2927, 28eleq12i 2238 . . . . 5 ((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅))
3029a1i 9 . . . 4 (𝜑 → ((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅)))
311, 2, 3, 4, 5, 6, 7ennnfonelem0 12360 . . . 4 (𝜑 → (𝐻‘0) = ∅)
3231dmeqd 4813 . . . . . . 7 (𝜑 → dom (𝐻‘0) = dom ∅)
3327a1i 9 . . . . . . 7 (𝜑 → (𝐹‘(𝑁‘0)) = (𝐹‘∅))
3432, 33opeq12d 3773 . . . . . 6 (𝜑 → ⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩ = ⟨dom ∅, (𝐹‘∅)⟩)
3534sneqd 3596 . . . . 5 (𝜑 → {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩} = {⟨dom ∅, (𝐹‘∅)⟩})
3631, 35uneq12d 3282 . . . 4 (𝜑 → ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩}) = (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}))
3730, 31, 36ifbieq12d 3552 . . 3 (𝜑 → if((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩})) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})))
3810, 14, 373eqtr3d 2211 . 2 (𝜑 → (𝐻‘1) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})))
39 noel 3418 . . . . 5 ¬ (𝐹‘∅) ∈ ∅
40 ima0 4970 . . . . . 6 (𝐹 “ ∅) = ∅
4140eleq2i 2237 . . . . 5 ((𝐹‘∅) ∈ (𝐹 “ ∅) ↔ (𝐹‘∅) ∈ ∅)
4239, 41mtbir 666 . . . 4 ¬ (𝐹‘∅) ∈ (𝐹 “ ∅)
4342iffalsei 3535 . . 3 if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})) = (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})
44 uncom 3271 . . . 4 (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}) = ({⟨dom ∅, (𝐹‘∅)⟩} ∪ ∅)
45 un0 3448 . . . 4 ({⟨dom ∅, (𝐹‘∅)⟩} ∪ ∅) = {⟨dom ∅, (𝐹‘∅)⟩}
4644, 45eqtri 2191 . . 3 (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}) = {⟨dom ∅, (𝐹‘∅)⟩}
47 dm0 4825 . . . . 5 dom ∅ = ∅
4847opeq1i 3768 . . . 4 ⟨dom ∅, (𝐹‘∅)⟩ = ⟨∅, (𝐹‘∅)⟩
4948sneqi 3595 . . 3 {⟨dom ∅, (𝐹‘∅)⟩} = {⟨∅, (𝐹‘∅)⟩}
5043, 46, 493eqtri 2195 . 2 if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})) = {⟨∅, (𝐹‘∅)⟩}
5138, 50eqtrdi 2219 1 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  DECID wdc 829   = wceq 1348  wtru 1349  wcel 2141  wne 2340  wral 2448  wrex 2449  cun 3119  c0 3414  ifcif 3526  {csn 3583  cop 3586  cmpt 4050  suc csuc 4350  ωcom 4574  ccnv 4610  dom cdm 4611  cima 4614  ontowfo 5196  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  cmpo 5855  freccfrec 6369  pm cpm 6627  0cc0 7774  1c1 7775   + caddc 7777  cmin 8090  0cn0 9135  cz 9212  cuz 9487  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pm 6629  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402
This theorem is referenced by:  ennnfonelemhom  12370
  Copyright terms: Public domain W3C validator