ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelem1 GIF version

Theorem ennnfonelem1 11759
Description: Lemma for ennnfone 11777. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelem1 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelem1
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . 4 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . 4 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . 4 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . 4 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . 4 𝐻 = seq0(𝐺, 𝐽)
8 0nn0 8890 . . . . 5 0 ∈ ℕ0
98a1i 9 . . . 4 (𝜑 → 0 ∈ ℕ0)
101, 2, 3, 4, 5, 6, 7, 9ennnfonelemp1 11758 . . 3 (𝜑 → (𝐻‘(0 + 1)) = if((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩})))
11 1e0p1 9121 . . . . . 6 1 = (0 + 1)
1211fveq2i 5376 . . . . 5 (𝐻‘1) = (𝐻‘(0 + 1))
1312eqcomi 2117 . . . 4 (𝐻‘(0 + 1)) = (𝐻‘1)
1413a1i 9 . . 3 (𝜑 → (𝐻‘(0 + 1)) = (𝐻‘1))
15 0zd 8964 . . . . . . . . . 10 (⊤ → 0 ∈ ℤ)
1615, 5frec2uz0d 10059 . . . . . . . . 9 (⊤ → (𝑁‘∅) = 0)
1716mptru 1321 . . . . . . . 8 (𝑁‘∅) = 0
1815, 5frec2uzf1od 10066 . . . . . . . . . 10 (⊤ → 𝑁:ω–1-1-onto→(ℤ‘0))
1918mptru 1321 . . . . . . . . 9 𝑁:ω–1-1-onto→(ℤ‘0)
20 peano1 4466 . . . . . . . . 9 ∅ ∈ ω
21 0z 8963 . . . . . . . . . 10 0 ∈ ℤ
22 uzid 9236 . . . . . . . . . 10 (0 ∈ ℤ → 0 ∈ (ℤ‘0))
2321, 22ax-mp 7 . . . . . . . . 9 0 ∈ (ℤ‘0)
24 f1ocnvfvb 5633 . . . . . . . . 9 ((𝑁:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω ∧ 0 ∈ (ℤ‘0)) → ((𝑁‘∅) = 0 ↔ (𝑁‘0) = ∅))
2519, 20, 23, 24mp3an 1296 . . . . . . . 8 ((𝑁‘∅) = 0 ↔ (𝑁‘0) = ∅)
2617, 25mpbi 144 . . . . . . 7 (𝑁‘0) = ∅
2726fveq2i 5376 . . . . . 6 (𝐹‘(𝑁‘0)) = (𝐹‘∅)
2826imaeq2i 4835 . . . . . 6 (𝐹 “ (𝑁‘0)) = (𝐹 “ ∅)
2927, 28eleq12i 2180 . . . . 5 ((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅))
3029a1i 9 . . . 4 (𝜑 → ((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)) ↔ (𝐹‘∅) ∈ (𝐹 “ ∅)))
311, 2, 3, 4, 5, 6, 7ennnfonelem0 11757 . . . 4 (𝜑 → (𝐻‘0) = ∅)
3231dmeqd 4699 . . . . . . 7 (𝜑 → dom (𝐻‘0) = dom ∅)
3327a1i 9 . . . . . . 7 (𝜑 → (𝐹‘(𝑁‘0)) = (𝐹‘∅))
3432, 33opeq12d 3677 . . . . . 6 (𝜑 → ⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩ = ⟨dom ∅, (𝐹‘∅)⟩)
3534sneqd 3504 . . . . 5 (𝜑 → {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩} = {⟨dom ∅, (𝐹‘∅)⟩})
3631, 35uneq12d 3195 . . . 4 (𝜑 → ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩}) = (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}))
3730, 31, 36ifbieq12d 3462 . . 3 (𝜑 → if((𝐹‘(𝑁‘0)) ∈ (𝐹 “ (𝑁‘0)), (𝐻‘0), ((𝐻‘0) ∪ {⟨dom (𝐻‘0), (𝐹‘(𝑁‘0))⟩})) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})))
3810, 14, 373eqtr3d 2153 . 2 (𝜑 → (𝐻‘1) = if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})))
39 noel 3331 . . . . 5 ¬ (𝐹‘∅) ∈ ∅
40 ima0 4854 . . . . . 6 (𝐹 “ ∅) = ∅
4140eleq2i 2179 . . . . 5 ((𝐹‘∅) ∈ (𝐹 “ ∅) ↔ (𝐹‘∅) ∈ ∅)
4239, 41mtbir 643 . . . 4 ¬ (𝐹‘∅) ∈ (𝐹 “ ∅)
4342iffalsei 3447 . . 3 if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})) = (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})
44 uncom 3184 . . . 4 (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}) = ({⟨dom ∅, (𝐹‘∅)⟩} ∪ ∅)
45 un0 3360 . . . 4 ({⟨dom ∅, (𝐹‘∅)⟩} ∪ ∅) = {⟨dom ∅, (𝐹‘∅)⟩}
4644, 45eqtri 2133 . . 3 (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩}) = {⟨dom ∅, (𝐹‘∅)⟩}
47 dm0 4711 . . . . 5 dom ∅ = ∅
4847opeq1i 3672 . . . 4 ⟨dom ∅, (𝐹‘∅)⟩ = ⟨∅, (𝐹‘∅)⟩
4948sneqi 3503 . . 3 {⟨dom ∅, (𝐹‘∅)⟩} = {⟨∅, (𝐹‘∅)⟩}
5043, 46, 493eqtri 2137 . 2 if((𝐹‘∅) ∈ (𝐹 “ ∅), ∅, (∅ ∪ {⟨dom ∅, (𝐹‘∅)⟩})) = {⟨∅, (𝐹‘∅)⟩}
5138, 50syl6eq 2161 1 (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  DECID wdc 802   = wceq 1312  wtru 1313  wcel 1461  wne 2280  wral 2388  wrex 2389  cun 3033  c0 3327  ifcif 3438  {csn 3491  cop 3494  cmpt 3947  suc csuc 4245  ωcom 4462  ccnv 4496  dom cdm 4497  cima 4500  ontowfo 5077  1-1-ontowf1o 5078  cfv 5079  (class class class)co 5726  cmpo 5728  freccfrec 6239  pm cpm 6495  0cc0 7541  1c1 7542   + caddc 7544  cmin 7850  0cn0 8875  cz 8952  cuz 9222  seqcseq 10105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-pm 6497  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953  df-uz 9223  df-seqfrec 10106
This theorem is referenced by:  ennnfonelemhom  11767
  Copyright terms: Public domain W3C validator