| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eq2tri | GIF version | ||
| Description: A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| eq2tr.1 | ⊢ (𝐴 = 𝐶 → 𝐷 = 𝐹) | 
| eq2tr.2 | ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐺) | 
| Ref | Expression | 
|---|---|
| eq2tri | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐹) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐺)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom 266 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐶)) | |
| 2 | eq2tr.1 | . . . 4 ⊢ (𝐴 = 𝐶 → 𝐷 = 𝐹) | |
| 3 | 2 | eqeq2d 2208 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 ↔ 𝐵 = 𝐹)) | 
| 4 | 3 | pm5.32i 454 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐹)) | 
| 5 | eq2tr.2 | . . . 4 ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐺) | |
| 6 | 5 | eqeq2d 2208 | . . 3 ⊢ (𝐵 = 𝐷 → (𝐴 = 𝐶 ↔ 𝐴 = 𝐺)) | 
| 7 | 6 | pm5.32i 454 | . 2 ⊢ ((𝐵 = 𝐷 ∧ 𝐴 = 𝐶) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐺)) | 
| 8 | 1, 4, 7 | 3bitr3i 210 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐹) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐺)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: xpassen 6889 | 
| Copyright terms: Public domain | W3C validator |