| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eq2tri | Unicode version | ||
| Description: A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| eq2tr.1 |
|
| eq2tr.2 |
|
| Ref | Expression |
|---|---|
| eq2tri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 |
. 2
| |
| 2 | eq2tr.1 |
. . . 4
| |
| 3 | 2 | eqeq2d 2208 |
. . 3
|
| 4 | 3 | pm5.32i 454 |
. 2
|
| 5 | eq2tr.2 |
. . . 4
| |
| 6 | 5 | eqeq2d 2208 |
. . 3
|
| 7 | 6 | pm5.32i 454 |
. 2
|
| 8 | 1, 4, 7 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: xpassen 6898 |
| Copyright terms: Public domain | W3C validator |