| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1w | GIF version | ||
| Description: Weaker version of eleq1 2259 (but more general than elequ1 2171) not depending on ax-ext 2178 nor df-cleq 2189. (Contributed by BJ, 24-Jun-2019.) |
| Ref | Expression |
|---|---|
| eleq1w | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ2 1727 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) | |
| 2 | 1 | anbi1d 465 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝑥 ∧ 𝑧 ∈ 𝐴) ↔ (𝑧 = 𝑦 ∧ 𝑧 ∈ 𝐴))) |
| 3 | 2 | exbidv 1839 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝐴) ↔ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 ∈ 𝐴))) |
| 4 | df-clel 2192 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝐴)) | |
| 5 | df-clel 2192 | . 2 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 ∈ 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| Copyright terms: Public domain | W3C validator |