Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4a | GIF version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4a.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4a.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3eqtr4a.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3eqtr4a | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4a.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3eqtr4a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtrdi 2215 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
4 | 3eqtr4a.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
5 | 3, 4 | eqtr4d 2201 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: uniintsnr 3860 fndmdifcom 5591 offres 6103 1stval2 6123 2ndval2 6124 ecovcom 6608 ecovass 6610 ecovdi 6612 nnnninfeq2 7093 zeo 9296 xnegneg 9769 xaddcom 9797 xaddid1 9798 xnegdi 9804 fzsuc2 10014 expnegap0 10463 facp1 10643 bcpasc 10679 hashfzp1 10737 resunimafz0 10744 absexp 11021 iooinsup 11218 fsumf1o 11331 fsumadd 11347 fisumrev2 11387 fsumparts 11411 fprodf1o 11529 fprodmul 11532 efexp 11623 tanval2ap 11654 gcdcom 11906 gcd0id 11912 dfgcd3 11943 gcdass 11948 lcmcom 11996 lcmneg 12006 lcmass 12017 sqrt2irrlem 12093 nn0gcdsq 12132 dfphi2 12152 eulerthlemth 12164 pcneg 12256 setscom 12434 restco 12814 txtopon 12902 dvef 13328 lgsneg 13565 lgsneg1 13566 lgsdir2 13574 lgsdir 13576 lgsdi 13578 |
Copyright terms: Public domain | W3C validator |