| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4a.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3eqtr4a.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3eqtr4a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3eqtr4a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtrdi 2255 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4a.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | eqtr4d 2242 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: uniintsnr 3927 fndmdifcom 5699 funopsn 5775 offres 6233 1stval2 6254 2ndval2 6255 ecovcom 6742 ecovass 6744 ecovdi 6746 nnnninfeq2 7246 zeo 9498 xnegneg 9975 xaddcom 10003 xaddid1 10004 xnegdi 10010 fzsuc2 10221 expnegap0 10714 facp1 10897 bcpasc 10933 hashfzp1 10991 resunimafz0 10998 ccat1st1st 11116 absexp 11465 iooinsup 11663 fsumf1o 11776 fsumadd 11792 fisumrev2 11832 fsumparts 11856 fprodf1o 11974 fprodmul 11977 efexp 12068 tanval2ap 12099 gcdcom 12369 gcd0id 12375 dfgcd3 12406 gcdass 12411 lcmcom 12461 lcmneg 12471 lcmass 12482 sqrt2irrlem 12558 nn0gcdsq 12597 dfphi2 12617 eulerthlemth 12629 pcneg 12723 setscom 12947 gsumfzfsumlem0 14423 restco 14721 txtopon 14809 dvmptid 15263 dvef 15274 fsumdvdsmul 15538 lgsneg 15576 lgsneg1 15577 lgsdir2 15585 lgsdir 15587 lgsdi 15589 lgsquad2lem2 15634 |
| Copyright terms: Public domain | W3C validator |