| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4a.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3eqtr4a.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3eqtr4a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3eqtr4a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtrdi 2245 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4a.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | eqtr4d 2232 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: uniintsnr 3911 fndmdifcom 5671 offres 6201 1stval2 6222 2ndval2 6223 ecovcom 6710 ecovass 6712 ecovdi 6714 nnnninfeq2 7204 zeo 9450 xnegneg 9927 xaddcom 9955 xaddid1 9956 xnegdi 9962 fzsuc2 10173 expnegap0 10658 facp1 10841 bcpasc 10877 hashfzp1 10935 resunimafz0 10942 absexp 11263 iooinsup 11461 fsumf1o 11574 fsumadd 11590 fisumrev2 11630 fsumparts 11654 fprodf1o 11772 fprodmul 11775 efexp 11866 tanval2ap 11897 gcdcom 12167 gcd0id 12173 dfgcd3 12204 gcdass 12209 lcmcom 12259 lcmneg 12269 lcmass 12280 sqrt2irrlem 12356 nn0gcdsq 12395 dfphi2 12415 eulerthlemth 12427 pcneg 12521 setscom 12745 gsumfzfsumlem0 14220 restco 14518 txtopon 14606 dvmptid 15060 dvef 15071 fsumdvdsmul 15335 lgsneg 15373 lgsneg1 15374 lgsdir2 15382 lgsdir 15384 lgsdi 15386 lgsquad2lem2 15431 |
| Copyright terms: Public domain | W3C validator |