| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4a.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3eqtr4a.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3eqtr4a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3eqtr4a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtrdi 2278 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4a.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | eqtr4d 2265 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: uniintsnr 3958 fndmdifcom 5740 funopsn 5816 offres 6278 1stval2 6299 2ndval2 6300 ecovcom 6787 ecovass 6789 ecovdi 6791 nnnninfeq2 7292 zeo 9548 xnegneg 10025 xaddcom 10053 xaddid1 10054 xnegdi 10060 fzsuc2 10271 expnegap0 10764 facp1 10947 bcpasc 10983 hashfzp1 11041 resunimafz0 11048 ccat1st1st 11167 absexp 11585 iooinsup 11783 fsumf1o 11896 fsumadd 11912 fisumrev2 11952 fsumparts 11976 fprodf1o 12094 fprodmul 12097 efexp 12188 tanval2ap 12219 gcdcom 12489 gcd0id 12495 dfgcd3 12526 gcdass 12531 lcmcom 12581 lcmneg 12591 lcmass 12602 sqrt2irrlem 12678 nn0gcdsq 12717 dfphi2 12737 eulerthlemth 12749 pcneg 12843 setscom 13067 gsumfzfsumlem0 14544 restco 14842 txtopon 14930 dvmptid 15384 dvef 15395 fsumdvdsmul 15659 lgsneg 15697 lgsneg1 15698 lgsdir2 15706 lgsdir 15708 lgsdi 15710 lgsquad2lem2 15755 |
| Copyright terms: Public domain | W3C validator |