| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4a.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3eqtr4a.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3eqtr4a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3eqtr4a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtrdi 2253 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4a.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | eqtr4d 2240 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: uniintsnr 3920 fndmdifcom 5685 funopsn 5761 offres 6219 1stval2 6240 2ndval2 6241 ecovcom 6728 ecovass 6730 ecovdi 6732 nnnninfeq2 7230 zeo 9477 xnegneg 9954 xaddcom 9982 xaddid1 9983 xnegdi 9989 fzsuc2 10200 expnegap0 10690 facp1 10873 bcpasc 10909 hashfzp1 10967 resunimafz0 10974 ccat1st1st 11091 absexp 11361 iooinsup 11559 fsumf1o 11672 fsumadd 11688 fisumrev2 11728 fsumparts 11752 fprodf1o 11870 fprodmul 11873 efexp 11964 tanval2ap 11995 gcdcom 12265 gcd0id 12271 dfgcd3 12302 gcdass 12307 lcmcom 12357 lcmneg 12367 lcmass 12378 sqrt2irrlem 12454 nn0gcdsq 12493 dfphi2 12513 eulerthlemth 12525 pcneg 12619 setscom 12843 gsumfzfsumlem0 14319 restco 14617 txtopon 14705 dvmptid 15159 dvef 15170 fsumdvdsmul 15434 lgsneg 15472 lgsneg1 15473 lgsdir2 15481 lgsdir 15483 lgsdi 15485 lgsquad2lem2 15530 |
| Copyright terms: Public domain | W3C validator |