![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4a | GIF version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4a.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4a.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3eqtr4a.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3eqtr4a | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4a.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3eqtr4a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtrdi 2242 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
4 | 3eqtr4a.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
5 | 3, 4 | eqtr4d 2229 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: uniintsnr 3906 fndmdifcom 5664 offres 6187 1stval2 6208 2ndval2 6209 ecovcom 6696 ecovass 6698 ecovdi 6700 nnnninfeq2 7188 zeo 9422 xnegneg 9899 xaddcom 9927 xaddid1 9928 xnegdi 9934 fzsuc2 10145 expnegap0 10618 facp1 10801 bcpasc 10837 hashfzp1 10895 resunimafz0 10902 absexp 11223 iooinsup 11420 fsumf1o 11533 fsumadd 11549 fisumrev2 11589 fsumparts 11613 fprodf1o 11731 fprodmul 11734 efexp 11825 tanval2ap 11856 gcdcom 12110 gcd0id 12116 dfgcd3 12147 gcdass 12152 lcmcom 12202 lcmneg 12212 lcmass 12223 sqrt2irrlem 12299 nn0gcdsq 12338 dfphi2 12358 eulerthlemth 12370 pcneg 12463 setscom 12658 gsumfzfsumlem0 14074 restco 14342 txtopon 14430 dvef 14873 lgsneg 15140 lgsneg1 15141 lgsdir2 15149 lgsdir 15151 lgsdi 15153 |
Copyright terms: Public domain | W3C validator |