| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4a | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4a.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3eqtr4a.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3eqtr4a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3eqtr4a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtrdi 2253 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4a.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | eqtr4d 2240 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: uniintsnr 3920 fndmdifcom 5685 funopsn 5761 offres 6219 1stval2 6240 2ndval2 6241 ecovcom 6728 ecovass 6730 ecovdi 6732 nnnninfeq2 7230 zeo 9477 xnegneg 9954 xaddcom 9982 xaddid1 9983 xnegdi 9989 fzsuc2 10200 expnegap0 10690 facp1 10873 bcpasc 10909 hashfzp1 10967 resunimafz0 10974 absexp 11332 iooinsup 11530 fsumf1o 11643 fsumadd 11659 fisumrev2 11699 fsumparts 11723 fprodf1o 11841 fprodmul 11844 efexp 11935 tanval2ap 11966 gcdcom 12236 gcd0id 12242 dfgcd3 12273 gcdass 12278 lcmcom 12328 lcmneg 12338 lcmass 12349 sqrt2irrlem 12425 nn0gcdsq 12464 dfphi2 12484 eulerthlemth 12496 pcneg 12590 setscom 12814 gsumfzfsumlem0 14290 restco 14588 txtopon 14676 dvmptid 15130 dvef 15141 fsumdvdsmul 15405 lgsneg 15443 lgsneg1 15444 lgsdir2 15452 lgsdir 15454 lgsdi 15456 lgsquad2lem2 15501 |
| Copyright terms: Public domain | W3C validator |