| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdav | GIF version | ||
| Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.) |
| Ref | Expression |
|---|---|
| eqrdav.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐶) |
| eqrdav.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) |
| eqrdav.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrdav | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdav.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐶) | |
| 2 | eqrdav.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | 2 | biimpd 144 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | 3 | impancom 260 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵)) |
| 5 | 1, 4 | mpd 13 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 6 | eqrdav.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) | |
| 7 | 2 | exbiri 382 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 8 | 7 | com23 78 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴))) |
| 9 | 8 | imp 124 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴)) |
| 10 | 6, 9 | mpd 13 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| 11 | 5, 10 | impbida 596 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 12 | 11 | eqrdv 2194 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: supminfex 9671 fzdifsuc 10156 |
| Copyright terms: Public domain | W3C validator |