| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | dfcleq 2190 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqrdav 2195 eqabdv 2325 csbcomg 3107 csbabg 3146 uneq1 3311 ineq1 3358 difin2 3426 difsn 3760 intmin4 3903 iunconstm 3925 iinconstm 3926 dfiun2g 3949 iindif2m 3985 iinin2m 3986 iunxsng 3993 iunxsngf 3995 iunpw 4516 opthprc 4715 inimasn 5088 dmsnopg 5142 dfco2a 5171 iotaeq 5228 fun11iun 5526 ssimaex 5623 unpreima 5688 respreima 5691 fconstfvm 5781 reldm 6246 rntpos 6317 frecsuclem 6466 iserd 6620 erth 6640 ecidg 6660 mapdm0 6724 map0e 6747 ixpiinm 6785 pw2f1odclem 6897 fifo 7048 ordiso2 7103 ctssdccl 7179 ctssdc 7181 exmidapne 7330 genpassl 7594 genpassu 7595 1idprl 7660 1idpru 7661 sup3exmid 8987 eqreznegel 9691 iccid 10003 fzsplit2 10128 fzsn 10144 fzpr 10155 uzsplit 10170 fzoval 10226 infssuzex 10326 frec2uzrand 10500 bitsmod 12124 bitscmp 12126 divsfval 12997 mhmpropd 13124 eqgid 13382 ghmmhmb 13410 ghmpropd 13439 ablnsg 13490 opprsubgg 13666 opprunitd 13692 unitpropdg 13730 opprsubrngg 13793 subsubrng2 13797 subrngpropd 13798 subsubrg2 13828 subrgpropd 13835 rhmpropd 13836 lssats2 13996 lsspropdg 14013 discld 14398 restsn 14442 restdis 14446 cndis 14503 cnpdis 14504 tx1cn 14531 tx2cn 14532 blpnf 14662 blininf 14686 blres 14696 xmetec 14699 metrest 14768 xmetxpbl 14770 cnbl0 14796 reopnap 14808 bl2ioo 14812 cncfmet 14854 limcdifap 14924 gausslemma2dlem1a 15325 |
| Copyright terms: Public domain | W3C validator |