| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1896 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | dfcleq 2198 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: eqrdav 2203 eqabdv 2333 csbcomg 3115 csbabg 3154 uneq1 3319 ineq1 3366 difin2 3434 difsn 3769 intmin4 3912 iunconstm 3934 iinconstm 3935 dfiun2g 3958 iindif2m 3994 iinin2m 3995 iunxsng 4002 iunxsngf 4004 iunpw 4525 opthprc 4724 inimasn 5097 dmsnopg 5151 dfco2a 5180 iotaeq 5237 fun11iun 5537 ssimaex 5634 unpreima 5699 respreima 5702 fconstfvm 5792 reldm 6262 rntpos 6333 frecsuclem 6482 iserd 6636 erth 6656 ecidg 6676 mapdm0 6740 map0e 6763 ixpiinm 6801 pw2f1odclem 6913 fifo 7064 ordiso2 7119 ctssdccl 7195 ctssdc 7197 finacn 7298 exmidapne 7354 acnccim 7366 genpassl 7619 genpassu 7620 1idprl 7685 1idpru 7686 sup3exmid 9012 eqreznegel 9717 iccid 10029 fzsplit2 10154 fzsn 10170 fzpr 10181 uzsplit 10196 fzoval 10252 infssuzex 10357 frec2uzrand 10531 bitsmod 12186 bitscmp 12188 divsfval 13078 mhmpropd 13216 eqgid 13480 ghmmhmb 13508 ghmpropd 13537 ablnsg 13588 opprsubgg 13764 opprunitd 13790 unitpropdg 13828 opprsubrngg 13891 subsubrng2 13895 subrngpropd 13896 subsubrg2 13926 subrgpropd 13933 rhmpropd 13934 lssats2 14094 lsspropdg 14111 discld 14526 restsn 14570 restdis 14574 cndis 14631 cnpdis 14632 tx1cn 14659 tx2cn 14660 blpnf 14790 blininf 14814 blres 14824 xmetec 14827 metrest 14896 xmetxpbl 14898 cnbl0 14924 reopnap 14936 bl2ioo 14940 cncfmet 14982 limcdifap 15052 gausslemma2dlem1a 15453 |
| Copyright terms: Public domain | W3C validator |