| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | dfcleq 2190 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqrdav 2195 eqabdv 2325 csbcomg 3107 csbabg 3146 uneq1 3311 ineq1 3358 difin2 3426 difsn 3760 intmin4 3903 iunconstm 3925 iinconstm 3926 dfiun2g 3949 iindif2m 3985 iinin2m 3986 iunxsng 3993 iunxsngf 3995 iunpw 4516 opthprc 4715 inimasn 5088 dmsnopg 5142 dfco2a 5171 iotaeq 5228 fun11iun 5528 ssimaex 5625 unpreima 5690 respreima 5693 fconstfvm 5783 reldm 6253 rntpos 6324 frecsuclem 6473 iserd 6627 erth 6647 ecidg 6667 mapdm0 6731 map0e 6754 ixpiinm 6792 pw2f1odclem 6904 fifo 7055 ordiso2 7110 ctssdccl 7186 ctssdc 7188 finacn 7289 exmidapne 7345 acnccim 7357 genpassl 7610 genpassu 7611 1idprl 7676 1idpru 7677 sup3exmid 9003 eqreznegel 9707 iccid 10019 fzsplit2 10144 fzsn 10160 fzpr 10171 uzsplit 10186 fzoval 10242 infssuzex 10342 frec2uzrand 10516 bitsmod 12140 bitscmp 12142 divsfval 13032 mhmpropd 13170 eqgid 13434 ghmmhmb 13462 ghmpropd 13491 ablnsg 13542 opprsubgg 13718 opprunitd 13744 unitpropdg 13782 opprsubrngg 13845 subsubrng2 13849 subrngpropd 13850 subsubrg2 13880 subrgpropd 13887 rhmpropd 13888 lssats2 14048 lsspropdg 14065 discld 14480 restsn 14524 restdis 14528 cndis 14585 cnpdis 14586 tx1cn 14613 tx2cn 14614 blpnf 14744 blininf 14768 blres 14778 xmetec 14781 metrest 14850 xmetxpbl 14852 cnbl0 14878 reopnap 14890 bl2ioo 14894 cncfmet 14936 limcdifap 15006 gausslemma2dlem1a 15407 |
| Copyright terms: Public domain | W3C validator |