Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqrdv | GIF version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
Ref | Expression |
---|---|
eqrdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | alrimiv 1867 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | dfcleq 2164 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: eqrdav 2169 csbcomg 3072 csbabg 3110 uneq1 3274 ineq1 3321 difin2 3389 difsn 3717 intmin4 3859 iunconstm 3881 iinconstm 3882 dfiun2g 3905 iindif2m 3940 iinin2m 3941 iunxsng 3948 iunxsngf 3950 iunpw 4465 opthprc 4662 inimasn 5028 dmsnopg 5082 dfco2a 5111 iotaeq 5168 fun11iun 5463 ssimaex 5557 unpreima 5621 respreima 5624 fconstfvm 5714 reldm 6165 rntpos 6236 frecsuclem 6385 iserd 6539 erth 6557 ecidg 6577 mapdm0 6641 map0e 6664 ixpiinm 6702 fifo 6957 ordiso2 7012 ctssdccl 7088 ctssdc 7090 genpassl 7486 genpassu 7487 1idprl 7552 1idpru 7553 sup3exmid 8873 eqreznegel 9573 iccid 9882 fzsplit2 10006 fzsn 10022 fzpr 10033 uzsplit 10048 fzoval 10104 frec2uzrand 10361 infssuzex 11904 mhmpropd 12689 discld 12930 restsn 12974 restdis 12978 cndis 13035 cnpdis 13036 tx1cn 13063 tx2cn 13064 blpnf 13194 blininf 13218 blres 13228 xmetec 13231 metrest 13300 xmetxpbl 13302 cnbl0 13328 reopnap 13332 bl2ioo 13336 cncfmet 13373 limcdifap 13425 |
Copyright terms: Public domain | W3C validator |