| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqrdv | GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) | 
| Ref | Expression | 
|---|---|
| eqrdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | 
| Ref | Expression | 
|---|---|
| eqrdv | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqrdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | 
| 3 | dfcleq 2190 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: eqrdav 2195 eqabdv 2325 csbcomg 3107 csbabg 3146 uneq1 3310 ineq1 3357 difin2 3425 difsn 3759 intmin4 3902 iunconstm 3924 iinconstm 3925 dfiun2g 3948 iindif2m 3984 iinin2m 3985 iunxsng 3992 iunxsngf 3994 iunpw 4515 opthprc 4714 inimasn 5087 dmsnopg 5141 dfco2a 5170 iotaeq 5227 fun11iun 5525 ssimaex 5622 unpreima 5687 respreima 5690 fconstfvm 5780 reldm 6244 rntpos 6315 frecsuclem 6464 iserd 6618 erth 6638 ecidg 6658 mapdm0 6722 map0e 6745 ixpiinm 6783 pw2f1odclem 6895 fifo 7046 ordiso2 7101 ctssdccl 7177 ctssdc 7179 exmidapne 7327 genpassl 7591 genpassu 7592 1idprl 7657 1idpru 7658 sup3exmid 8984 eqreznegel 9688 iccid 10000 fzsplit2 10125 fzsn 10141 fzpr 10152 uzsplit 10167 fzoval 10223 infssuzex 10323 frec2uzrand 10497 divsfval 12971 mhmpropd 13098 eqgid 13356 ghmmhmb 13384 ghmpropd 13413 ablnsg 13464 opprsubgg 13640 opprunitd 13666 unitpropdg 13704 opprsubrngg 13767 subsubrng2 13771 subrngpropd 13772 subsubrg2 13802 subrgpropd 13809 rhmpropd 13810 lssats2 13970 lsspropdg 13987 discld 14372 restsn 14416 restdis 14420 cndis 14477 cnpdis 14478 tx1cn 14505 tx2cn 14506 blpnf 14636 blininf 14660 blres 14670 xmetec 14673 metrest 14742 xmetxpbl 14744 cnbl0 14770 reopnap 14782 bl2ioo 14786 cncfmet 14828 limcdifap 14898 gausslemma2dlem1a 15299 | 
| Copyright terms: Public domain | W3C validator |