Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqrdv | GIF version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
Ref | Expression |
---|---|
eqrdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | alrimiv 1862 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | dfcleq 2159 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: eqrdav 2164 csbcomg 3068 csbabg 3106 uneq1 3269 ineq1 3316 difin2 3384 difsn 3710 intmin4 3852 iunconstm 3874 iinconstm 3875 dfiun2g 3898 iindif2m 3933 iinin2m 3934 iunxsng 3941 iunxsngf 3943 iunpw 4458 opthprc 4655 inimasn 5021 dmsnopg 5075 dfco2a 5104 iotaeq 5161 fun11iun 5453 ssimaex 5547 unpreima 5610 respreima 5613 fconstfvm 5703 reldm 6154 rntpos 6225 frecsuclem 6374 iserd 6527 erth 6545 ecidg 6565 mapdm0 6629 map0e 6652 ixpiinm 6690 fifo 6945 ordiso2 7000 ctssdccl 7076 ctssdc 7078 genpassl 7465 genpassu 7466 1idprl 7531 1idpru 7532 sup3exmid 8852 eqreznegel 9552 iccid 9861 fzsplit2 9985 fzsn 10001 fzpr 10012 uzsplit 10027 fzoval 10083 frec2uzrand 10340 infssuzex 11882 discld 12786 restsn 12830 restdis 12834 cndis 12891 cnpdis 12892 tx1cn 12919 tx2cn 12920 blpnf 13050 blininf 13074 blres 13084 xmetec 13087 metrest 13156 xmetxpbl 13158 cnbl0 13184 reopnap 13188 bl2ioo 13192 cncfmet 13229 limcdifap 13281 |
Copyright terms: Public domain | W3C validator |