| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1896 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | dfcleq 2198 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: eqrdav 2203 eqabdv 2333 csbcomg 3115 csbabg 3154 uneq1 3319 ineq1 3366 difin2 3434 difsn 3769 intmin4 3912 iunconstm 3934 iinconstm 3935 dfiun2g 3958 iindif2m 3994 iinin2m 3995 iunxsng 4002 iunxsngf 4004 iunpw 4526 opthprc 4725 inimasn 5099 dmsnopg 5153 dfco2a 5182 iotaeq 5239 fun11iun 5542 ssimaex 5639 unpreima 5704 respreima 5707 fconstfvm 5801 reldm 6271 rntpos 6342 frecsuclem 6491 iserd 6645 erth 6665 ecidg 6685 mapdm0 6749 map0e 6772 ixpiinm 6810 pw2f1odclem 6930 fifo 7081 ordiso2 7136 ctssdccl 7212 ctssdc 7214 finacn 7315 exmidapne 7371 acnccim 7383 genpassl 7636 genpassu 7637 1idprl 7702 1idpru 7703 sup3exmid 9029 eqreznegel 9734 iccid 10046 fzsplit2 10171 fzsn 10187 fzpr 10198 uzsplit 10213 fzoval 10269 infssuzex 10374 frec2uzrand 10548 bitsmod 12209 bitscmp 12211 divsfval 13102 mhmpropd 13240 eqgid 13504 ghmmhmb 13532 ghmpropd 13561 ablnsg 13612 opprsubgg 13788 opprunitd 13814 unitpropdg 13852 opprsubrngg 13915 subsubrng2 13919 subrngpropd 13920 subsubrg2 13950 subrgpropd 13957 rhmpropd 13958 lssats2 14118 lsspropdg 14135 discld 14550 restsn 14594 restdis 14598 cndis 14655 cnpdis 14656 tx1cn 14683 tx2cn 14684 blpnf 14814 blininf 14838 blres 14848 xmetec 14851 metrest 14920 xmetxpbl 14922 cnbl0 14948 reopnap 14960 bl2ioo 14964 cncfmet 15006 limcdifap 15076 gausslemma2dlem1a 15477 |
| Copyright terms: Public domain | W3C validator |