| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1898 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | dfcleq 2200 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: eqrdav 2205 eqabdv 2335 csbcomg 3120 csbabg 3159 uneq1 3324 ineq1 3371 difin2 3439 difsn 3776 intmin4 3919 iunconstm 3941 iinconstm 3942 dfiun2g 3965 iindif2m 4001 iinin2m 4002 iunxsng 4009 iunxsngf 4011 iunpw 4535 opthprc 4734 inimasn 5109 dmsnopg 5163 dfco2a 5192 iotaeq 5249 fun11iun 5555 ssimaex 5653 unpreima 5718 respreima 5721 fconstfvm 5815 reldm 6285 rntpos 6356 frecsuclem 6505 iserd 6659 erth 6679 ecidg 6699 mapdm0 6763 map0e 6786 ixpiinm 6824 pw2f1odclem 6946 fifo 7097 ordiso2 7152 ctssdccl 7228 ctssdc 7230 finacn 7332 pw1if 7356 exmidapne 7392 acnccim 7404 genpassl 7657 genpassu 7658 1idprl 7723 1idpru 7724 sup3exmid 9050 eqreznegel 9755 iccid 10067 fzsplit2 10192 fzsn 10208 fzpr 10219 uzsplit 10234 fzoval 10290 infssuzex 10398 frec2uzrand 10572 bitsmod 12342 bitscmp 12344 divsfval 13235 mhmpropd 13373 eqgid 13637 ghmmhmb 13665 ghmpropd 13694 ablnsg 13745 opprsubgg 13921 opprunitd 13947 unitpropdg 13985 opprsubrngg 14048 subsubrng2 14052 subrngpropd 14053 subsubrg2 14083 subrgpropd 14090 rhmpropd 14091 lssats2 14251 lsspropdg 14268 discld 14683 restsn 14727 restdis 14731 cndis 14788 cnpdis 14789 tx1cn 14816 tx2cn 14817 blpnf 14947 blininf 14971 blres 14981 xmetec 14984 metrest 15053 xmetxpbl 15055 cnbl0 15081 reopnap 15093 bl2ioo 15097 cncfmet 15139 limcdifap 15209 gausslemma2dlem1a 15610 |
| Copyright terms: Public domain | W3C validator |