| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdv | GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
| Ref | Expression |
|---|---|
| eqrdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrdv | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1920 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | dfcleq 2223 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqrdav 2228 eqabdv 2358 csbcomg 3147 csbabg 3186 uneq1 3351 ineq1 3398 difin2 3466 difsn 3804 intmin4 3950 iunconstm 3972 iinconstm 3973 dfiun2g 3996 iindif2m 4032 iinin2m 4033 iunxsng 4040 iunxsngf 4042 iunpw 4570 opthprc 4769 inimasn 5145 dmsnopg 5199 dfco2a 5228 iotaeq 5286 fun11iun 5592 ssimaex 5694 unpreima 5759 respreima 5762 fconstfvm 5856 reldm 6330 rntpos 6401 frecsuclem 6550 iserd 6704 erth 6724 ecidg 6744 mapdm0 6808 map0e 6831 ixpiinm 6869 pw2f1odclem 6991 fifo 7143 ordiso2 7198 ctssdccl 7274 ctssdc 7276 finacn 7382 pw1if 7406 exmidapne 7442 acnccim 7454 genpassl 7707 genpassu 7708 1idprl 7773 1idpru 7774 sup3exmid 9100 eqreznegel 9805 iccid 10117 fzsplit2 10242 fzsn 10258 fzpr 10269 uzsplit 10284 fzoval 10340 infssuzex 10448 frec2uzrand 10622 bitsmod 12462 bitscmp 12464 divsfval 13356 mhmpropd 13494 eqgid 13758 ghmmhmb 13786 ghmpropd 13815 ablnsg 13866 opprsubgg 14042 opprunitd 14068 unitpropdg 14106 opprsubrngg 14169 subsubrng2 14173 subrngpropd 14174 subsubrg2 14204 subrgpropd 14211 rhmpropd 14212 lssats2 14372 lsspropdg 14389 discld 14804 restsn 14848 restdis 14852 cndis 14909 cnpdis 14910 tx1cn 14937 tx2cn 14938 blpnf 15068 blininf 15092 blres 15102 xmetec 15105 metrest 15174 xmetxpbl 15176 cnbl0 15202 reopnap 15214 bl2ioo 15218 cncfmet 15260 limcdifap 15330 gausslemma2dlem1a 15731 ushgredgedg 16018 ushgredgedgloop 16020 |
| Copyright terms: Public domain | W3C validator |