ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supminfex GIF version

Theorem supminfex 9671
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
supminfex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
supminfex.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
supminfex (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem supminfex
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 supminfex.ss . . . . 5 (𝜑𝐴 ⊆ ℝ)
31, 2supinfneg 9669 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑧 < 𝑦)))
4 ssrab2 3268 . . . . 5 {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ
54a1i 9 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ)
63, 5infrenegsupex 9668 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ))
7 elrabi 2917 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} → 𝑥 ∈ ℝ)
87adantl 277 . . . . . 6 ((𝜑𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}) → 𝑥 ∈ ℝ)
92sselda 3183 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
10 negeq 8219 . . . . . . . . . 10 (𝑧 = 𝑥 → -𝑧 = -𝑥)
1110eleq1d 2265 . . . . . . . . 9 (𝑧 = 𝑥 → (-𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}))
1211elrab3 2921 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}))
13 renegcl 8287 . . . . . . . . 9 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
14 negeq 8219 . . . . . . . . . . 11 (𝑤 = -𝑥 → -𝑤 = --𝑥)
1514eleq1d 2265 . . . . . . . . . 10 (𝑤 = -𝑥 → (-𝑤𝐴 ↔ --𝑥𝐴))
1615elrab3 2921 . . . . . . . . 9 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ --𝑥𝐴))
1713, 16syl 14 . . . . . . . 8 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ --𝑥𝐴))
18 recn 8012 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1918negnegd 8328 . . . . . . . . 9 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
2019eleq1d 2265 . . . . . . . 8 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
2112, 17, 203bitrd 214 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ 𝑥𝐴))
2221adantl 277 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ 𝑥𝐴))
238, 9, 22eqrdav 2195 . . . . 5 (𝜑 → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} = 𝐴)
2423supeq1d 7053 . . . 4 (𝜑 → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
2524negeqd 8221 . . 3 (𝜑 → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < ))
266, 25eqtrd 2229 . 2 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ))
27 lttri3 8106 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2827adantl 277 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2928, 3infclti 7089 . . . 4 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
3029recnd 8055 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℂ)
3128, 1supclti 7064 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
3231recnd 8055 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ)
33 negcon2 8279 . . 3 ((inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℂ ∧ sup(𝐴, ℝ, < ) ∈ ℂ) → (inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < )))
3430, 32, 33syl2anc 411 . 2 (𝜑 → (inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < )))
3526, 34mpbid 147 1 (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {crab 2479  wss 3157   class class class wbr 4033  supcsup 7048  infcinf 7049  cc 7877  cr 7878   < clt 8061  -cneg 8198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-sub 8199  df-neg 8200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator