Step | Hyp | Ref
| Expression |
1 | | supminfex.ex |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
2 | | supminfex.ss |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
3 | 1, 2 | supinfneg 9554 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}𝑧 < 𝑦))) |
4 | | ssrab2 3232 |
. . . . 5
⊢ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ⊆ ℝ |
5 | 4 | a1i 9 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ⊆ ℝ) |
6 | 3, 5 | infrenegsupex 9553 |
. . 3
⊢ (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}}, ℝ, < )) |
7 | | elrabi 2883 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}} → 𝑥 ∈ ℝ) |
8 | 7 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}}) → 𝑥 ∈ ℝ) |
9 | 2 | sselda 3147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
10 | | negeq 8112 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → -𝑧 = -𝑥) |
11 | 10 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (-𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴})) |
12 | 11 | elrab3 2887 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴})) |
13 | | renegcl 8180 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → -𝑥 ∈
ℝ) |
14 | | negeq 8112 |
. . . . . . . . . . 11
⊢ (𝑤 = -𝑥 → -𝑤 = --𝑥) |
15 | 14 | eleq1d 2239 |
. . . . . . . . . 10
⊢ (𝑤 = -𝑥 → (-𝑤 ∈ 𝐴 ↔ --𝑥 ∈ 𝐴)) |
16 | 15 | elrab3 2887 |
. . . . . . . . 9
⊢ (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
17 | 13, 16 | syl 14 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴} ↔ --𝑥 ∈ 𝐴)) |
18 | | recn 7907 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
19 | 18 | negnegd 8221 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → --𝑥 = 𝑥) |
20 | 19 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → (--𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
21 | 12, 17, 20 | 3bitrd 213 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}} ↔ 𝑥 ∈ 𝐴)) |
22 | 21 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}} ↔ 𝑥 ∈ 𝐴)) |
23 | 8, 9, 22 | eqrdav 2169 |
. . . . 5
⊢ (𝜑 → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}} = 𝐴) |
24 | 23 | supeq1d 6964 |
. . . 4
⊢ (𝜑 → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < )) |
25 | 24 | negeqd 8114 |
. . 3
⊢ (𝜑 → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < )) |
26 | 6, 25 | eqtrd 2203 |
. 2
⊢ (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < )) |
27 | | lttri3 7999 |
. . . . . 6
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
28 | 27 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
29 | 28, 3 | infclti 7000 |
. . . 4
⊢ (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈
ℝ) |
30 | 29 | recnd 7948 |
. . 3
⊢ (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈
ℂ) |
31 | 28, 1 | supclti 6975 |
. . . 4
⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈
ℝ) |
32 | 31 | recnd 7948 |
. . 3
⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈
ℂ) |
33 | | negcon2 8172 |
. . 3
⊢
((inf({𝑤 ∈
ℝ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
ℂ ∧ sup(𝐴,
ℝ, < ) ∈ ℂ) → (inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < ))) |
34 | 30, 32, 33 | syl2anc 409 |
. 2
⊢ (𝜑 → (inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < ))) |
35 | 26, 34 | mpbid 146 |
1
⊢ (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |