ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supminfex GIF version

Theorem supminfex 9700
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
supminfex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
supminfex.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
supminfex (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem supminfex
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 supminfex.ss . . . . 5 (𝜑𝐴 ⊆ ℝ)
31, 2supinfneg 9698 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑧 < 𝑦)))
4 ssrab2 3277 . . . . 5 {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ
54a1i 9 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ)
63, 5infrenegsupex 9697 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ))
7 elrabi 2925 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} → 𝑥 ∈ ℝ)
87adantl 277 . . . . . 6 ((𝜑𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}) → 𝑥 ∈ ℝ)
92sselda 3192 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
10 negeq 8247 . . . . . . . . . 10 (𝑧 = 𝑥 → -𝑧 = -𝑥)
1110eleq1d 2273 . . . . . . . . 9 (𝑧 = 𝑥 → (-𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}))
1211elrab3 2929 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}))
13 renegcl 8315 . . . . . . . . 9 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
14 negeq 8247 . . . . . . . . . . 11 (𝑤 = -𝑥 → -𝑤 = --𝑥)
1514eleq1d 2273 . . . . . . . . . 10 (𝑤 = -𝑥 → (-𝑤𝐴 ↔ --𝑥𝐴))
1615elrab3 2929 . . . . . . . . 9 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ --𝑥𝐴))
1713, 16syl 14 . . . . . . . 8 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ --𝑥𝐴))
18 recn 8040 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1918negnegd 8356 . . . . . . . . 9 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
2019eleq1d 2273 . . . . . . . 8 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
2112, 17, 203bitrd 214 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ 𝑥𝐴))
2221adantl 277 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ 𝑥𝐴))
238, 9, 22eqrdav 2203 . . . . 5 (𝜑 → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} = 𝐴)
2423supeq1d 7071 . . . 4 (𝜑 → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
2524negeqd 8249 . . 3 (𝜑 → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < ))
266, 25eqtrd 2237 . 2 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ))
27 lttri3 8134 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2827adantl 277 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2928, 3infclti 7107 . . . 4 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
3029recnd 8083 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℂ)
3128, 1supclti 7082 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
3231recnd 8083 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ)
33 negcon2 8307 . . 3 ((inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℂ ∧ sup(𝐴, ℝ, < ) ∈ ℂ) → (inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < )))
3430, 32, 33syl2anc 411 . 2 (𝜑 → (inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < )))
3526, 34mpbid 147 1 (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  wrex 2484  {crab 2487  wss 3165   class class class wbr 4043  supcsup 7066  infcinf 7067  cc 7905  cr 7906   < clt 8089  -cneg 8226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-sub 8227  df-neg 8228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator