ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supminfex GIF version

Theorem supminfex 9556
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
supminfex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
supminfex.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
supminfex (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem supminfex
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 supminfex.ss . . . . 5 (𝜑𝐴 ⊆ ℝ)
31, 2supinfneg 9554 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑧 < 𝑦)))
4 ssrab2 3232 . . . . 5 {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ
54a1i 9 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ)
63, 5infrenegsupex 9553 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ))
7 elrabi 2883 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} → 𝑥 ∈ ℝ)
87adantl 275 . . . . . 6 ((𝜑𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}) → 𝑥 ∈ ℝ)
92sselda 3147 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
10 negeq 8112 . . . . . . . . . 10 (𝑧 = 𝑥 → -𝑧 = -𝑥)
1110eleq1d 2239 . . . . . . . . 9 (𝑧 = 𝑥 → (-𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}))
1211elrab3 2887 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}))
13 renegcl 8180 . . . . . . . . 9 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
14 negeq 8112 . . . . . . . . . . 11 (𝑤 = -𝑥 → -𝑤 = --𝑥)
1514eleq1d 2239 . . . . . . . . . 10 (𝑤 = -𝑥 → (-𝑤𝐴 ↔ --𝑥𝐴))
1615elrab3 2887 . . . . . . . . 9 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ --𝑥𝐴))
1713, 16syl 14 . . . . . . . 8 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ --𝑥𝐴))
18 recn 7907 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1918negnegd 8221 . . . . . . . . 9 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
2019eleq1d 2239 . . . . . . . 8 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
2112, 17, 203bitrd 213 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ 𝑥𝐴))
2221adantl 275 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ 𝑥𝐴))
238, 9, 22eqrdav 2169 . . . . 5 (𝜑 → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} = 𝐴)
2423supeq1d 6964 . . . 4 (𝜑 → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
2524negeqd 8114 . . 3 (𝜑 → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < ))
266, 25eqtrd 2203 . 2 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ))
27 lttri3 7999 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2827adantl 275 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2928, 3infclti 7000 . . . 4 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
3029recnd 7948 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℂ)
3128, 1supclti 6975 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
3231recnd 7948 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ)
33 negcon2 8172 . . 3 ((inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℂ ∧ sup(𝐴, ℝ, < ) ∈ ℂ) → (inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < )))
3430, 32, 33syl2anc 409 . 2 (𝜑 → (inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < )))
3526, 34mpbid 146 1 (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452  wss 3121   class class class wbr 3989  supcsup 6959  infcinf 6960  cc 7772  cr 7773   < clt 7954  -cneg 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator