ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supminfex GIF version

Theorem supminfex 9531
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
supminfex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
supminfex.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
supminfex (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem supminfex
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 supminfex.ss . . . . 5 (𝜑𝐴 ⊆ ℝ)
31, 2supinfneg 9529 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑧 < 𝑦)))
4 ssrab2 3226 . . . . 5 {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ
54a1i 9 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ)
63, 5infrenegsupex 9528 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ))
7 elrabi 2878 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} → 𝑥 ∈ ℝ)
87adantl 275 . . . . . 6 ((𝜑𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}) → 𝑥 ∈ ℝ)
92sselda 3141 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
10 negeq 8087 . . . . . . . . . 10 (𝑧 = 𝑥 → -𝑧 = -𝑥)
1110eleq1d 2234 . . . . . . . . 9 (𝑧 = 𝑥 → (-𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}))
1211elrab3 2882 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}))
13 renegcl 8155 . . . . . . . . 9 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
14 negeq 8087 . . . . . . . . . . 11 (𝑤 = -𝑥 → -𝑤 = --𝑥)
1514eleq1d 2234 . . . . . . . . . 10 (𝑤 = -𝑥 → (-𝑤𝐴 ↔ --𝑥𝐴))
1615elrab3 2882 . . . . . . . . 9 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ --𝑥𝐴))
1713, 16syl 14 . . . . . . . 8 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ --𝑥𝐴))
18 recn 7882 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1918negnegd 8196 . . . . . . . . 9 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
2019eleq1d 2234 . . . . . . . 8 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
2112, 17, 203bitrd 213 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ 𝑥𝐴))
2221adantl 275 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ 𝑥𝐴))
238, 9, 22eqrdav 2164 . . . . 5 (𝜑 → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} = 𝐴)
2423supeq1d 6948 . . . 4 (𝜑 → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
2524negeqd 8089 . . 3 (𝜑 → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < ))
266, 25eqtrd 2198 . 2 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ))
27 lttri3 7974 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2827adantl 275 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2928, 3infclti 6984 . . . 4 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
3029recnd 7923 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℂ)
3128, 1supclti 6959 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
3231recnd 7923 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ)
33 negcon2 8147 . . 3 ((inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℂ ∧ sup(𝐴, ℝ, < ) ∈ ℂ) → (inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < )))
3430, 32, 33syl2anc 409 . 2 (𝜑 → (inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < )))
3526, 34mpbid 146 1 (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2443  wrex 2444  {crab 2447  wss 3115   class class class wbr 3981  supcsup 6943  infcinf 6944  cc 7747  cr 7748   < clt 7929  -cneg 8066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-apti 7864  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-ltxr 7934  df-sub 8067  df-neg 8068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator