ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supminfex GIF version

Theorem supminfex 8994
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
supminfex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
supminfex.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
supminfex (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem supminfex
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 supminfex.ss . . . . 5 (𝜑𝐴 ⊆ ℝ)
31, 2supinfneg 8992 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑧 < 𝑦)))
4 ssrab2 3092 . . . . 5 {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ
54a1i 9 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤𝐴} ⊆ ℝ)
63, 5infrenegsupex 8991 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ))
7 elrabi 2758 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} → 𝑥 ∈ ℝ)
87adantl 271 . . . . . 6 ((𝜑𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}) → 𝑥 ∈ ℝ)
92sselda 3012 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
10 negeq 7596 . . . . . . . . . 10 (𝑧 = 𝑥 → -𝑧 = -𝑥)
1110eleq1d 2153 . . . . . . . . 9 (𝑧 = 𝑥 → (-𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}))
1211elrab3 2762 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ -𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}))
13 renegcl 7664 . . . . . . . . 9 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
14 negeq 7596 . . . . . . . . . . 11 (𝑤 = -𝑥 → -𝑤 = --𝑥)
1514eleq1d 2153 . . . . . . . . . 10 (𝑤 = -𝑥 → (-𝑤𝐴 ↔ --𝑥𝐴))
1615elrab3 2762 . . . . . . . . 9 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ --𝑥𝐴))
1713, 16syl 14 . . . . . . . 8 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ --𝑥𝐴))
18 recn 7396 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1918negnegd 7705 . . . . . . . . 9 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
2019eleq1d 2153 . . . . . . . 8 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
2112, 17, 203bitrd 212 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ 𝑥𝐴))
2221adantl 271 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} ↔ 𝑥𝐴))
238, 9, 22eqrdav 2084 . . . . 5 (𝜑 → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}} = 𝐴)
2423supeq1d 6603 . . . 4 (𝜑 → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ) = sup(𝐴, ℝ, < ))
2524negeqd 7598 . . 3 (𝜑 → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}}, ℝ, < ) = -sup(𝐴, ℝ, < ))
266, 25eqtrd 2117 . 2 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ))
27 lttri3 7486 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2827adantl 271 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2928, 3infclti 6639 . . . 4 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
3029recnd 7437 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℂ)
3128, 1supclti 6614 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
3231recnd 7437 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ)
33 negcon2 7656 . . 3 ((inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℂ ∧ sup(𝐴, ℝ, < ) ∈ ℂ) → (inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < )))
3430, 32, 33syl2anc 403 . 2 (𝜑 → (inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ) = -sup(𝐴, ℝ, < ) ↔ sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < )))
3526, 34mpbid 145 1 (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  wral 2355  wrex 2356  {crab 2359  wss 2986   class class class wbr 3814  supcsup 6598  infcinf 6599  cc 7269  cr 7270   < clt 7443  -cneg 7575
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-addcom 7366  ax-addass 7368  ax-distr 7370  ax-i2m1 7371  ax-0id 7374  ax-rnegex 7375  ax-cnre 7377  ax-pre-ltirr 7378  ax-pre-apti 7381  ax-pre-ltadd 7382
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-mpt 3870  df-id 4087  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-f1 4977  df-fo 4978  df-f1o 4979  df-fv 4980  df-isom 4981  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-sup 6600  df-inf 6601  df-pnf 7445  df-mnf 7446  df-ltxr 7448  df-sub 7576  df-neg 7577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator