Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqrdav | Unicode version |
Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.) |
Ref | Expression |
---|---|
eqrdav.1 | |
eqrdav.2 | |
eqrdav.3 |
Ref | Expression |
---|---|
eqrdav |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdav.1 | . . . 4 | |
2 | eqrdav.3 | . . . . . 6 | |
3 | 2 | biimpd 143 | . . . . 5 |
4 | 3 | impancom 258 | . . . 4 |
5 | 1, 4 | mpd 13 | . . 3 |
6 | eqrdav.2 | . . . 4 | |
7 | 2 | exbiri 380 | . . . . . 6 |
8 | 7 | com23 78 | . . . . 5 |
9 | 8 | imp 123 | . . . 4 |
10 | 6, 9 | mpd 13 | . . 3 |
11 | 5, 10 | impbida 586 | . 2 |
12 | 11 | eqrdv 2163 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: supminfex 9535 fzdifsuc 10016 |
Copyright terms: Public domain | W3C validator |