| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impancom | GIF version | ||
| Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| impancom.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impancom | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impancom.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: eqrdav 2195 disjiun 4029 euotd 4288 onsucelsucr 4545 isotr 5866 spc2ed 6300 nninfninc 7198 ltbtwnnqq 7501 genpcdl 7605 genpcuu 7606 un0addcl 9301 un0mulcl 9302 btwnnz 9439 uznfz 10197 elfz0ubfz0 10219 fzoss1 10266 elfzo0z 10279 fzofzim 10283 elfzom1p1elfzo 10309 ssfzo12bi 10320 subfzo0 10337 modfzo0difsn 10506 expaddzap 10694 caucvgre 11165 caubnd2 11301 summodc 11567 fzo0dvdseq 12041 nno 12090 lcmdvds 12274 hashgcdeq 12435 modprm0 12450 pcqcl 12502 issubg4m 13401 01eq0ring 13823 neii1 14491 neii2 14493 fsumcncntop 14911 gausslemma2dlem1a 15407 |
| Copyright terms: Public domain | W3C validator |