![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impancom | GIF version |
Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
Ref | Expression |
---|---|
impancom.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
impancom | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impancom.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: eqrdav 2192 disjiun 4024 euotd 4283 onsucelsucr 4540 isotr 5859 spc2ed 6286 nninfninc 7182 ltbtwnnqq 7475 genpcdl 7579 genpcuu 7580 un0addcl 9273 un0mulcl 9274 btwnnz 9411 uznfz 10169 elfz0ubfz0 10191 fzoss1 10238 elfzo0z 10251 fzofzim 10255 elfzom1p1elfzo 10281 ssfzo12bi 10292 subfzo0 10309 modfzo0difsn 10466 expaddzap 10654 caucvgre 11125 caubnd2 11261 summodc 11526 fzo0dvdseq 11999 nno 12047 lcmdvds 12217 hashgcdeq 12377 modprm0 12392 pcqcl 12444 issubg4m 13263 01eq0ring 13685 neii1 14315 neii2 14317 fsumcncntop 14724 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |