![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impancom | GIF version |
Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
Ref | Expression |
---|---|
impancom.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
impancom | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impancom.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: eqrdav 2192 disjiun 4025 euotd 4284 onsucelsucr 4541 isotr 5860 spc2ed 6288 nninfninc 7184 ltbtwnnqq 7477 genpcdl 7581 genpcuu 7582 un0addcl 9276 un0mulcl 9277 btwnnz 9414 uznfz 10172 elfz0ubfz0 10194 fzoss1 10241 elfzo0z 10254 fzofzim 10258 elfzom1p1elfzo 10284 ssfzo12bi 10295 subfzo0 10312 modfzo0difsn 10469 expaddzap 10657 caucvgre 11128 caubnd2 11264 summodc 11529 fzo0dvdseq 12002 nno 12050 lcmdvds 12220 hashgcdeq 12380 modprm0 12395 pcqcl 12447 issubg4m 13266 01eq0ring 13688 neii1 14326 neii2 14328 fsumcncntop 14746 gausslemma2dlem1a 15215 |
Copyright terms: Public domain | W3C validator |