| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impancom | GIF version | ||
| Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| impancom.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impancom | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impancom.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: eqrdav 2203 disjiun 4038 euotd 4298 onsucelsucr 4555 isotr 5884 spc2ed 6318 nninfninc 7224 ltbtwnnqq 7527 genpcdl 7631 genpcuu 7632 un0addcl 9327 un0mulcl 9328 btwnnz 9466 uznfz 10224 elfz0ubfz0 10246 fzoss1 10293 elfzo0z 10306 fzofzim 10310 elfzom1p1elfzo 10341 ssfzo12bi 10352 subfzo0 10369 modfzo0difsn 10538 expaddzap 10726 caucvgre 11234 caubnd2 11370 summodc 11636 fzo0dvdseq 12110 nno 12159 lcmdvds 12343 hashgcdeq 12504 modprm0 12519 pcqcl 12571 issubg4m 13471 01eq0ring 13893 neii1 14561 neii2 14563 fsumcncntop 14981 gausslemma2dlem1a 15477 |
| Copyright terms: Public domain | W3C validator |