| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impancom | GIF version | ||
| Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| impancom.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impancom | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impancom.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: eqrdav 2205 disjiun 4046 euotd 4307 onsucelsucr 4564 isotr 5898 spc2ed 6332 nninfninc 7240 ltbtwnnqq 7548 genpcdl 7652 genpcuu 7653 un0addcl 9348 un0mulcl 9349 btwnnz 9487 uznfz 10245 elfz0ubfz0 10267 fzoss1 10315 elfzo0z 10330 fzofzim 10334 elfzom1p1elfzo 10365 ssfzo12bi 10376 subfzo0 10393 modfzo0difsn 10562 expaddzap 10750 swrdswrdlem 11180 swrdswrd 11181 caucvgre 11367 caubnd2 11503 summodc 11769 fzo0dvdseq 12243 nno 12292 lcmdvds 12476 hashgcdeq 12637 modprm0 12652 pcqcl 12704 issubg4m 13604 01eq0ring 14026 neii1 14694 neii2 14696 fsumcncntop 15114 gausslemma2dlem1a 15610 |
| Copyright terms: Public domain | W3C validator |