| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impancom | GIF version | ||
| Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| impancom.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impancom | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impancom.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: eqrdav 2195 disjiun 4029 euotd 4288 onsucelsucr 4545 isotr 5864 spc2ed 6292 nninfninc 7190 ltbtwnnqq 7484 genpcdl 7588 genpcuu 7589 un0addcl 9284 un0mulcl 9285 btwnnz 9422 uznfz 10180 elfz0ubfz0 10202 fzoss1 10249 elfzo0z 10262 fzofzim 10266 elfzom1p1elfzo 10292 ssfzo12bi 10303 subfzo0 10320 modfzo0difsn 10489 expaddzap 10677 caucvgre 11148 caubnd2 11284 summodc 11550 fzo0dvdseq 12024 nno 12073 lcmdvds 12257 hashgcdeq 12418 modprm0 12433 pcqcl 12485 issubg4m 13333 01eq0ring 13755 neii1 14393 neii2 14395 fsumcncntop 14813 gausslemma2dlem1a 15309 |
| Copyright terms: Public domain | W3C validator |