ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impancom GIF version

Theorem impancom 258
Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.)
Hypothesis
Ref Expression
impancom.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
impancom ((𝜑𝜒) → (𝜓𝜃))

Proof of Theorem impancom
StepHypRef Expression
1 impancom.1 . . . 4 ((𝜑𝜓) → (𝜒𝜃))
21ex 114 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
32com23 78 . 2 (𝜑 → (𝜒 → (𝜓𝜃)))
43imp 123 1 ((𝜑𝜒) → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  eqrdav  2164  disjiun  3977  euotd  4232  onsucelsucr  4485  isotr  5784  spc2ed  6201  ltbtwnnqq  7356  genpcdl  7460  genpcuu  7461  un0addcl  9147  un0mulcl  9148  btwnnz  9285  uznfz  10038  elfz0ubfz0  10060  fzoss1  10106  elfzo0z  10119  fzofzim  10123  elfzom1p1elfzo  10149  ssfzo12bi  10160  subfzo0  10177  modfzo0difsn  10330  expaddzap  10499  caucvgre  10923  caubnd2  11059  summodc  11324  fzo0dvdseq  11795  nno  11843  lcmdvds  12011  hashgcdeq  12171  modprm0  12186  pcqcl  12238  neii1  12797  neii2  12799  fsumcncntop  13206
  Copyright terms: Public domain W3C validator