Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impancom | GIF version |
Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
Ref | Expression |
---|---|
impancom.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
impancom | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impancom.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 114 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
4 | 3 | imp 123 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: eqrdav 2164 disjiun 3977 euotd 4232 onsucelsucr 4485 isotr 5784 spc2ed 6201 ltbtwnnqq 7356 genpcdl 7460 genpcuu 7461 un0addcl 9147 un0mulcl 9148 btwnnz 9285 uznfz 10038 elfz0ubfz0 10060 fzoss1 10106 elfzo0z 10119 fzofzim 10123 elfzom1p1elfzo 10149 ssfzo12bi 10160 subfzo0 10177 modfzo0difsn 10330 expaddzap 10499 caucvgre 10923 caubnd2 11059 summodc 11324 fzo0dvdseq 11795 nno 11843 lcmdvds 12011 hashgcdeq 12171 modprm0 12186 pcqcl 12238 neii1 12797 neii2 12799 fsumcncntop 13206 |
Copyright terms: Public domain | W3C validator |