| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > impancom | GIF version | ||
| Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| impancom.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | 
| Ref | Expression | 
|---|---|
| impancom | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | impancom.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) | 
| 4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: eqrdav 2195 disjiun 4028 euotd 4287 onsucelsucr 4544 isotr 5863 spc2ed 6291 nninfninc 7189 ltbtwnnqq 7482 genpcdl 7586 genpcuu 7587 un0addcl 9282 un0mulcl 9283 btwnnz 9420 uznfz 10178 elfz0ubfz0 10200 fzoss1 10247 elfzo0z 10260 fzofzim 10264 elfzom1p1elfzo 10290 ssfzo12bi 10301 subfzo0 10318 modfzo0difsn 10487 expaddzap 10675 caucvgre 11146 caubnd2 11282 summodc 11548 fzo0dvdseq 12022 nno 12071 lcmdvds 12247 hashgcdeq 12408 modprm0 12423 pcqcl 12475 issubg4m 13323 01eq0ring 13745 neii1 14383 neii2 14385 fsumcncntop 14803 gausslemma2dlem1a 15299 | 
| Copyright terms: Public domain | W3C validator |