| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impancom | GIF version | ||
| Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| impancom.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| impancom | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impancom.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: eqrdav 2228 disjiun 4077 euotd 4340 onsucelsucr 4599 isotr 5939 spc2ed 6377 nninfninc 7286 ltbtwnnqq 7598 genpcdl 7702 genpcuu 7703 un0addcl 9398 un0mulcl 9399 btwnnz 9537 uznfz 10295 elfz0ubfz0 10317 fzoss1 10365 elfzo0z 10380 fzofzim 10384 elfzom1p1elfzo 10415 ssfzo12bi 10426 subfzo0 10443 modfzo0difsn 10612 expaddzap 10800 swrdswrdlem 11231 swrdswrd 11232 swrdccatin1 11252 pfxccatin12lem3 11259 caucvgre 11487 caubnd2 11623 summodc 11889 fzo0dvdseq 12363 nno 12412 lcmdvds 12596 hashgcdeq 12757 modprm0 12772 pcqcl 12824 issubg4m 13725 01eq0ring 14147 neii1 14815 neii2 14817 fsumcncntop 15235 gausslemma2dlem1a 15731 usgrislfuspgrdom 15982 |
| Copyright terms: Public domain | W3C validator |