ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdifsuc GIF version

Theorem fzdifsuc 10203
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
Assertion
Ref Expression
fzdifsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 10147 . . 3 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
21adantl 277 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
3 eldifi 3295 . . . 4 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
4 elfzelz 10147 . . . 4 (𝑘 ∈ (𝑀...(𝑁 + 1)) → 𝑘 ∈ ℤ)
53, 4syl 14 . . 3 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) → 𝑘 ∈ ℤ)
65adantl 277 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) → 𝑘 ∈ ℤ)
7 simpr 110 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
8 eluzel2 9653 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
98adantr 276 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℤ)
10 eluzelz 9657 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1110adantr 276 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
12 elfz 10136 . . . 4 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑀𝑘𝑘𝑁)))
137, 9, 11, 12syl3anc 1250 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑀𝑘𝑘𝑁)))
14 eldif 3175 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑘 ∈ (𝑀...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ {(𝑁 + 1)}))
1511peano2zd 9498 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁 + 1) ∈ ℤ)
16 elfz 10136 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑀𝑘𝑘 ≤ (𝑁 + 1))))
177, 9, 15, 16syl3anc 1250 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑀𝑘𝑘 ≤ (𝑁 + 1))))
18 velsn 3650 . . . . . . . . . . 11 (𝑘 ∈ {(𝑁 + 1)} ↔ 𝑘 = (𝑁 + 1))
1918notbii 670 . . . . . . . . . 10 𝑘 ∈ {(𝑁 + 1)} ↔ ¬ 𝑘 = (𝑁 + 1))
20 nesym 2421 . . . . . . . . . 10 ((𝑁 + 1) ≠ 𝑘 ↔ ¬ 𝑘 = (𝑁 + 1))
2119, 20bitr4i 187 . . . . . . . . 9 𝑘 ∈ {(𝑁 + 1)} ↔ (𝑁 + 1) ≠ 𝑘)
2221a1i 9 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (¬ 𝑘 ∈ {(𝑁 + 1)} ↔ (𝑁 + 1) ≠ 𝑘))
2317, 22anbi12d 473 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑘 ∈ (𝑀...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ {(𝑁 + 1)}) ↔ ((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘)))
2414, 23bitrid 192 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ ((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘)))
25 anass 401 . . . . . 6 (((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
2624, 25bitrdi 196 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))))
27 zltlen 9451 . . . . . . 7 ((𝑘 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑘 < (𝑁 + 1) ↔ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
287, 15, 27syl2anc 411 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 < (𝑁 + 1) ↔ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
2928anbi2d 464 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘 < (𝑁 + 1)) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))))
3026, 29bitr4d 191 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘𝑘 < (𝑁 + 1))))
31 zleltp1 9428 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
327, 11, 31syl2anc 411 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
3332anbi2d 464 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) ↔ (𝑀𝑘𝑘 < (𝑁 + 1))))
3430, 33bitr4d 191 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘𝑘𝑁)))
3513, 34bitr4d 191 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})))
362, 6, 35eqrdav 2204 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wne 2376  cdif 3163  {csn 3633   class class class wbr 4044  cfv 5271  (class class class)co 5944  1c1 7926   + caddc 7928   < clt 8107  cle 8108  cz 9372  cuz 9648  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator