ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdifsuc GIF version

Theorem fzdifsuc 9644
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
Assertion
Ref Expression
fzdifsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 9589 . . 3 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
21adantl 272 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
3 eldifi 3137 . . . 4 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
4 elfzelz 9589 . . . 4 (𝑘 ∈ (𝑀...(𝑁 + 1)) → 𝑘 ∈ ℤ)
53, 4syl 14 . . 3 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) → 𝑘 ∈ ℤ)
65adantl 272 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) → 𝑘 ∈ ℤ)
7 simpr 109 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
8 eluzel2 9123 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
98adantr 271 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℤ)
10 eluzelz 9127 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1110adantr 271 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
12 elfz 9579 . . . 4 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑀𝑘𝑘𝑁)))
137, 9, 11, 12syl3anc 1181 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑀𝑘𝑘𝑁)))
14 eldif 3022 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑘 ∈ (𝑀...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ {(𝑁 + 1)}))
1511peano2zd 8970 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁 + 1) ∈ ℤ)
16 elfz 9579 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑀𝑘𝑘 ≤ (𝑁 + 1))))
177, 9, 15, 16syl3anc 1181 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑀𝑘𝑘 ≤ (𝑁 + 1))))
18 velsn 3483 . . . . . . . . . . 11 (𝑘 ∈ {(𝑁 + 1)} ↔ 𝑘 = (𝑁 + 1))
1918notbii 632 . . . . . . . . . 10 𝑘 ∈ {(𝑁 + 1)} ↔ ¬ 𝑘 = (𝑁 + 1))
20 nesym 2307 . . . . . . . . . 10 ((𝑁 + 1) ≠ 𝑘 ↔ ¬ 𝑘 = (𝑁 + 1))
2119, 20bitr4i 186 . . . . . . . . 9 𝑘 ∈ {(𝑁 + 1)} ↔ (𝑁 + 1) ≠ 𝑘)
2221a1i 9 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (¬ 𝑘 ∈ {(𝑁 + 1)} ↔ (𝑁 + 1) ≠ 𝑘))
2317, 22anbi12d 458 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑘 ∈ (𝑀...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ {(𝑁 + 1)}) ↔ ((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘)))
2414, 23syl5bb 191 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ ((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘)))
25 anass 394 . . . . . 6 (((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
2624, 25syl6bb 195 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))))
27 zltlen 8923 . . . . . . 7 ((𝑘 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑘 < (𝑁 + 1) ↔ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
287, 15, 27syl2anc 404 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 < (𝑁 + 1) ↔ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
2928anbi2d 453 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘 < (𝑁 + 1)) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))))
3026, 29bitr4d 190 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘𝑘 < (𝑁 + 1))))
31 zleltp1 8903 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
327, 11, 31syl2anc 404 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
3332anbi2d 453 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) ↔ (𝑀𝑘𝑘 < (𝑁 + 1))))
3430, 33bitr4d 190 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘𝑘𝑁)))
3513, 34bitr4d 190 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})))
362, 6, 35eqrdav 2094 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445  wne 2262  cdif 3010  {csn 3466   class class class wbr 3867  cfv 5049  (class class class)co 5690  1c1 7448   + caddc 7450   < clt 7619  cle 7620  cz 8848  cuz 9118  ...cfz 9573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-fz 9574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator