ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdifsuc GIF version

Theorem fzdifsuc 9892
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
Assertion
Ref Expression
fzdifsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 9837 . . 3 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
21adantl 275 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
3 eldifi 3203 . . . 4 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
4 elfzelz 9837 . . . 4 (𝑘 ∈ (𝑀...(𝑁 + 1)) → 𝑘 ∈ ℤ)
53, 4syl 14 . . 3 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) → 𝑘 ∈ ℤ)
65adantl 275 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) → 𝑘 ∈ ℤ)
7 simpr 109 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
8 eluzel2 9355 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
98adantr 274 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℤ)
10 eluzelz 9359 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1110adantr 274 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
12 elfz 9827 . . . 4 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑀𝑘𝑘𝑁)))
137, 9, 11, 12syl3anc 1217 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑀𝑘𝑘𝑁)))
14 eldif 3085 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑘 ∈ (𝑀...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ {(𝑁 + 1)}))
1511peano2zd 9200 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁 + 1) ∈ ℤ)
16 elfz 9827 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑀𝑘𝑘 ≤ (𝑁 + 1))))
177, 9, 15, 16syl3anc 1217 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑀𝑘𝑘 ≤ (𝑁 + 1))))
18 velsn 3549 . . . . . . . . . . 11 (𝑘 ∈ {(𝑁 + 1)} ↔ 𝑘 = (𝑁 + 1))
1918notbii 658 . . . . . . . . . 10 𝑘 ∈ {(𝑁 + 1)} ↔ ¬ 𝑘 = (𝑁 + 1))
20 nesym 2354 . . . . . . . . . 10 ((𝑁 + 1) ≠ 𝑘 ↔ ¬ 𝑘 = (𝑁 + 1))
2119, 20bitr4i 186 . . . . . . . . 9 𝑘 ∈ {(𝑁 + 1)} ↔ (𝑁 + 1) ≠ 𝑘)
2221a1i 9 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (¬ 𝑘 ∈ {(𝑁 + 1)} ↔ (𝑁 + 1) ≠ 𝑘))
2317, 22anbi12d 465 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑘 ∈ (𝑀...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ {(𝑁 + 1)}) ↔ ((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘)))
2414, 23syl5bb 191 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ ((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘)))
25 anass 399 . . . . . 6 (((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
2624, 25syl6bb 195 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))))
27 zltlen 9153 . . . . . . 7 ((𝑘 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑘 < (𝑁 + 1) ↔ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
287, 15, 27syl2anc 409 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 < (𝑁 + 1) ↔ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
2928anbi2d 460 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘 < (𝑁 + 1)) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))))
3026, 29bitr4d 190 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘𝑘 < (𝑁 + 1))))
31 zleltp1 9133 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
327, 11, 31syl2anc 409 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
3332anbi2d 460 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) ↔ (𝑀𝑘𝑘 < (𝑁 + 1))))
3430, 33bitr4d 190 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘𝑘𝑁)))
3513, 34bitr4d 190 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})))
362, 6, 35eqrdav 2139 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wne 2309  cdif 3073  {csn 3532   class class class wbr 3937  cfv 5131  (class class class)co 5782  1c1 7645   + caddc 7647   < clt 7824  cle 7825  cz 9078  cuz 9350  ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator