ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdifsuc GIF version

Theorem fzdifsuc 10277
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
Assertion
Ref Expression
fzdifsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 10221 . . 3 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
21adantl 277 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
3 eldifi 3326 . . . 4 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
4 elfzelz 10221 . . . 4 (𝑘 ∈ (𝑀...(𝑁 + 1)) → 𝑘 ∈ ℤ)
53, 4syl 14 . . 3 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) → 𝑘 ∈ ℤ)
65adantl 277 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) → 𝑘 ∈ ℤ)
7 simpr 110 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
8 eluzel2 9727 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
98adantr 276 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℤ)
10 eluzelz 9731 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1110adantr 276 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
12 elfz 10210 . . . 4 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑀𝑘𝑘𝑁)))
137, 9, 11, 12syl3anc 1271 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑀𝑘𝑘𝑁)))
14 eldif 3206 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑘 ∈ (𝑀...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ {(𝑁 + 1)}))
1511peano2zd 9572 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁 + 1) ∈ ℤ)
16 elfz 10210 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑀𝑘𝑘 ≤ (𝑁 + 1))))
177, 9, 15, 16syl3anc 1271 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑀𝑘𝑘 ≤ (𝑁 + 1))))
18 velsn 3683 . . . . . . . . . . 11 (𝑘 ∈ {(𝑁 + 1)} ↔ 𝑘 = (𝑁 + 1))
1918notbii 672 . . . . . . . . . 10 𝑘 ∈ {(𝑁 + 1)} ↔ ¬ 𝑘 = (𝑁 + 1))
20 nesym 2445 . . . . . . . . . 10 ((𝑁 + 1) ≠ 𝑘 ↔ ¬ 𝑘 = (𝑁 + 1))
2119, 20bitr4i 187 . . . . . . . . 9 𝑘 ∈ {(𝑁 + 1)} ↔ (𝑁 + 1) ≠ 𝑘)
2221a1i 9 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (¬ 𝑘 ∈ {(𝑁 + 1)} ↔ (𝑁 + 1) ≠ 𝑘))
2317, 22anbi12d 473 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑘 ∈ (𝑀...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ {(𝑁 + 1)}) ↔ ((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘)))
2414, 23bitrid 192 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ ((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘)))
25 anass 401 . . . . . 6 (((𝑀𝑘𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
2624, 25bitrdi 196 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))))
27 zltlen 9525 . . . . . . 7 ((𝑘 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑘 < (𝑁 + 1) ↔ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
287, 15, 27syl2anc 411 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 < (𝑁 + 1) ↔ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))
2928anbi2d 464 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘 < (𝑁 + 1)) ↔ (𝑀𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))))
3026, 29bitr4d 191 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘𝑘 < (𝑁 + 1))))
31 zleltp1 9502 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
327, 11, 31syl2anc 411 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
3332anbi2d 464 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) ↔ (𝑀𝑘𝑘 < (𝑁 + 1))))
3430, 33bitr4d 191 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀𝑘𝑘𝑁)))
3513, 34bitr4d 191 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})))
362, 6, 35eqrdav 2228 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  cdif 3194  {csn 3666   class class class wbr 4083  cfv 5318  (class class class)co 6001  1c1 8000   + caddc 8002   < clt 8181  cle 8182  cz 9446  cuz 9722  ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator