Step | Hyp | Ref
| Expression |
1 | | elfzelz 10027 |
. . 3
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ) |
2 | 1 | adantl 277 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ) |
3 | | eldifi 3259 |
. . . 4
⊢ (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) → 𝑘 ∈ (𝑀...(𝑁 + 1))) |
4 | | elfzelz 10027 |
. . . 4
⊢ (𝑘 ∈ (𝑀...(𝑁 + 1)) → 𝑘 ∈ ℤ) |
5 | 3, 4 | syl 14 |
. . 3
⊢ (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) → 𝑘 ∈ ℤ) |
6 | 5 | adantl 277 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) → 𝑘 ∈ ℤ) |
7 | | simpr 110 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ) |
8 | | eluzel2 9535 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
9 | 8 | adantr 276 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℤ) |
10 | | eluzelz 9539 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
11 | 10 | adantr 276 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ) |
12 | | elfz 10016 |
. . . 4
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) |
13 | 7, 9, 11, 12 | syl3anc 1238 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) |
14 | | eldif 3140 |
. . . . . . 7
⊢ (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑘 ∈ (𝑀...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ {(𝑁 + 1)})) |
15 | 11 | peano2zd 9380 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁 + 1) ∈ ℤ) |
16 | | elfz 10016 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) →
(𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ (𝑁 + 1)))) |
17 | 7, 9, 15, 16 | syl3anc 1238 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ (𝑁 + 1)))) |
18 | | velsn 3611 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {(𝑁 + 1)} ↔ 𝑘 = (𝑁 + 1)) |
19 | 18 | notbii 668 |
. . . . . . . . . 10
⊢ (¬
𝑘 ∈ {(𝑁 + 1)} ↔ ¬ 𝑘 = (𝑁 + 1)) |
20 | | nesym 2392 |
. . . . . . . . . 10
⊢ ((𝑁 + 1) ≠ 𝑘 ↔ ¬ 𝑘 = (𝑁 + 1)) |
21 | 19, 20 | bitr4i 187 |
. . . . . . . . 9
⊢ (¬
𝑘 ∈ {(𝑁 + 1)} ↔ (𝑁 + 1) ≠ 𝑘) |
22 | 21 | a1i 9 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (¬ 𝑘 ∈ {(𝑁 + 1)} ↔ (𝑁 + 1) ≠ 𝑘)) |
23 | 17, 22 | anbi12d 473 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑘 ∈ (𝑀...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ {(𝑁 + 1)}) ↔ ((𝑀 ≤ 𝑘 ∧ 𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘))) |
24 | 14, 23 | bitrid 192 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ ((𝑀 ≤ 𝑘 ∧ 𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘))) |
25 | | anass 401 |
. . . . . 6
⊢ (((𝑀 ≤ 𝑘 ∧ 𝑘 ≤ (𝑁 + 1)) ∧ (𝑁 + 1) ≠ 𝑘) ↔ (𝑀 ≤ 𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))) |
26 | 24, 25 | bitrdi 196 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀 ≤ 𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))) |
27 | | zltlen 9333 |
. . . . . . 7
⊢ ((𝑘 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) →
(𝑘 < (𝑁 + 1) ↔ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))) |
28 | 7, 15, 27 | syl2anc 411 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 < (𝑁 + 1) ↔ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘))) |
29 | 28 | anbi2d 464 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑘 ∧ 𝑘 < (𝑁 + 1)) ↔ (𝑀 ≤ 𝑘 ∧ (𝑘 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≠ 𝑘)))) |
30 | 26, 29 | bitr4d 191 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 < (𝑁 + 1)))) |
31 | | zleltp1 9310 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ≤ 𝑁 ↔ 𝑘 < (𝑁 + 1))) |
32 | 7, 11, 31 | syl2anc 411 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ≤ 𝑁 ↔ 𝑘 < (𝑁 + 1))) |
33 | 32 | anbi2d 464 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 < (𝑁 + 1)))) |
34 | 30, 33 | bitr4d 191 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) |
35 | 13, 34 | bitr4d 191 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))) |
36 | 2, 6, 35 | eqrdav 2176 |
1
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) |